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We examine the relationship of lexical representations, pronunciation variation, and word
recognition, by investigating effects of two lexical variables: Phonological Neighborhood
Density (the number of words that can be formed by a single phoneme substitution, addi-
tion, or deletion from the target word), as well as a measure of the perceptual similarity of
a target word to other words in the lexicon. We show that perceptual similarity to other
words affects recognition, but not production. Phonological Neighborhood Density, on
the other hand, affects both word durations and recognition accuracy (words with many
neighbors shorten and are difficult recognition targets). We interpret our results as indicat-
ing that effects of Phonological Neighborhood Density on pronunciation are not generally
due to perceptual similarity of the target to other words. Our results are consistent with a
more general line of research demonstrating effects of ‘central’ processes on ‘peripheral’
processes such as articulation, as well as effects of modality-specific properties, such as
auditory similarity and motor movements, on measures thought to tap central processes.

� 2015 Elsevier Inc. All rights reserved.
Introduction

A central theme in the psychology of language concerns
the role of perceptual, articulatory, and modality-neutral
representations and processes in language processing. For
example, verbal working memory has been argued to have
both articulatory and auditory components (Gupta &
MacWhinney, 1995; Wilson, 2001) and/or components
not tied to any sensory modality (Jones, Beaman &
Macken, 1996). Another example concerns the nature of
percepts in speech perception, which have variously been
characterized as auditory (Diehl & Kluender, 1989; Diehl,
Lotto, & Holt, 2004) or as motor gestures (Galantucci,
Fowler, & Turvey, 2006; Liberman & Mattingly, 1985). A
third example addresses the question of what makes word
forms similar to one another. Word form similarity affects
many phenomena in speech production and perception,
including phonological priming, speech errors, immediate
verbal recall, and spoken word recognition difficulty
(Conrad & Hull, 1964; Goldrick, Baker, Murphy, & Baese-
Berk, 2011; Goldrick, Folk, & Rapp, 2010; Levelt et al.,
1991; Page, Madge, Cumming, & Norris, 2007). What is less
clear is the degree to which, or the circumstances under
which, word form similarity is based on auditory or artic-
ulatory properties of words, or on some form of abstract
representation shared across modalities.

A key concept in studies of effects of word form similar-
ity is phonological neighborhood density. Informally,
phonological neighborhood density is often defined as
‘‘the number of words that sound similar to a given word”
(e.g. Vitevitch, 2007, p. 166). A common method for deter-
mining that number is to count the number of words
(‘‘neighbors”) in a reference lexicon that differ from a tar-
get word through addition, deletion, or substitution of
lexical
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exactly one phonological segment, regardless of the degree
of auditory similarity of target and neighbor. By that crite-
rion, the neighbors of cat include caught, pat, and can. Con-
venience is doubtless one reason why these two
characterizations of phonological neighborhood density –
in perceptual/auditory terms and in terms of phonological
segments – are each common, for conveying informal
working definitions (‘‘neighbors sound similar”) and
straightforwardly estimating phonological neighborhood
density in electronically searchable dictionaries (‘‘count
anything as a neighbor that differs by one segment”). Con-
venience aside, these definitions and methods reflect the
potential role of various sensorimotor properties vs.
modality-neutral segmental representations in the phe-
nomena that the literature on neighborhood density has
brought to light.

Different definitions invite different inferences about
the sources of effects of word form similarity generally,
and phonological neighborhood density in particular. The
definition of phonological neighbors as similar-sounding
words implies that effects of phonological neighborhood
density are due at least in part to auditory similarity; if
that is so, then the degree to which words sound similar
to one another should affect the strength of phonological
neighborhood density effects. On the other hand, the
one-segment-difference metric implies that words over-
lapping in segmental content without sounding particu-
larly similar (e.g. leap and lope) should act as neighbors
of one another. Conversely, words that do sound similar
to one another, but do not form neighbors by the one-
segment-difference metric (e.g. this and fish), are not
expected to act as phonological neighbors under the
segmental-overlap conception of word form similarity.

What makes word forms similar? Common sense sug-
gests that the answer must depend on the nature of the
task, such as identifying words over noise vs. producing
tongue twisters. It follows that a measure of phonological
neighborhoods that successfully predicts neighborhood
effects in one domain needn’t be relevant to some other
domain. The fact that phonological neighborhood density
as estimated by the one-segment difference criterion is
predictive of a wide range of tasks is an empirical discovery
that has had a major impact on models of speech produc-
tion and comprehension. However, observations consistent
with those models do not constitute proof of a causal role
of one-segment-difference neighbors in the phenomena
being modeled: Words that share segments in common
require some of the same articulatory movements and
often do sound similar to one another. Therefore, one and
the same effect may be consistent with models based on
‘amodal’ segment overlap, articulatory, or perceptual sim-
ilarity. As Vitevitch and Luce (2016) point out: ‘‘[M]etrics
for computing similarity neighborhoods are not the same
as theoretical statements about the proposed effects of
similarity neighborhood activation on recognition.” Yet,
the predictiveness of phonological neighborhood density
metrics is sometimes taken as the basis for inferred mech-
anisms. For example, effects of phonological neighborhood
density on phonetic detail in speech production, which we
discuss below, are sometimes explained in terms of the
auditory similarity of words (e.g. Lindblom, 1990; Wright,
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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2004; Scarborough, 2004). At other times (including in our
own previous work, e.g. Gahl, Yao, & Johnson, 2012), effects
of phonological neighborhood density on speech produc-
tion are linked to (amodal) segmental and articulatory sim-
ilarity of words, without any assessment of auditory
similarity.

The question of what makes words similar also figures
in information-based models of spoken language process-
ing (e.g. Aylett, 2000; Hale, 2003; Jaeger & Levy, 2006;
Levy, 2008). The central idea in these models is that lan-
guage processing is optimized for efficient communication,
and that communication is most efficient when informa-
tion is conveyed at a constant rate. The more an item (a
word or sound) reduces the uncertainty about the message
to be conveyed at any given point in an utterance, the
heavier its informational load. A word that is highly similar
to other words may generate high uncertainty. Segments
of words in dense phonological neighborhoods may con-
siderably narrow down the set of words matching the sig-
nal and hence reduce uncertainty. Applied to speech
production, the idea is that speakers spend more time
and/or articulatory effort, and/or produce signals that
increase the probability of recognition for highly informa-
tive items than on less informative items (Fosler-Lussier &
Morgan, 1999; Aylett, 2000; Jurafsky, 2001; Aylett & Turk,
2004, 2006; van Son & Pols, 2003; Pluymaekers, Ernestus &
Baayen, 2005; Bell, Brenier, Girand & Jurafsky, 2009; Buz &
Jaeger, 2015; Kuperman, Pluymaekers, Ernestus, & Baayen,
2007; Pate & Goldwater, 2015; Seyfarth, 2014; Tily &
Kuperman, 2012). The question of what makes words sim-
ilar can be stated as the question of how estimates of infor-
mation load are to be fleshed out. In practice, information-
based models of speech production and recognition have
calculated the information carried by sounds and words
in different ways. These differences depend in part on the
unit being modeled, such as phonological segments (van
Son & Pols, 2003), syllables (Aylett & Turk, 2006), or words
(Buz & Jaeger, 2015), and on estimates of contextual pre-
dictability. In part, though, they depend on assumptions
about what it takes to disambiguate a signal: Like metrics
of phonological neighborhood density, some estimates of
information density take auditory similarity into account,
while others do not. Which estimates best predict variation
in the signal or in recognition accuracy, and whether artic-
ulatory effort, intelligibility, and recognition probability all
vary as a function of one measure of information load is an
empirical question. One step towards answering that ques-
tion was taken in Buz and Jaeger (2013), who described
three different ways of estimating neighborhood density:
The (log) count of the neighbors, the summed log fre-
quency of the neighbors, and a measure taking into
account both the segment-to-segment confusability of tar-
get and neighbors along with the frequency of neighbors
(termed the frequency-weighted neighborhood probability
in Luce & Pisoni, 1998, see below, but computed using a
different confusability matrix). Buz and Jaeger (2013)
found that the three measures behaved similarly as predic-
tors of word duration in a picture naming experiment. (We
return to the results of the picture naming experiment,
which is described in greater detail in Buz & Jaeger, 2015,
in the General Discussion.) Buz and Jaeger (2013 and
oods: Phonological and perceptual neighborhood density in lexical
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2015) did not attempt to assess whether the neighborhood
density measures were equally good predictors of recogni-
tion accuracy of the recorded naming responses. More gen-
erally, the ability of different measures of phonological
neighborhood density to predict recognition vs. production
has typically been assessed in separate studies, using dif-
ferent sets of words. Tracking the effects of all aspects of
word similarity and contextual predictability affecting pro-
duction and recognition, in identical contexts, remains an
unmet goal.

The present study takes a step in that direction. We
track effects of variables indexing word-form similarity
with and without taking perceptual similarity into account
in two data sets representing auditory word recognition
accuracy (the ‘recognition’ set) and word duration in a cor-
pus of conversational speech (the ‘production’ set, taken
from the Buckeye corpus; Pitt et al., 2007). We hypothe-
sized that perceptual and segmental metrics of phonologi-
cal similarity have different and, to some degree, separable
effects in recognition accuracy vs. conversational speech,
and that these differences would reveal themselves as
asymmetries in the predictiveness of a perceptually-
based vs. a segmentally-based estimate of phonological
neighborhood density.

Several cautionary notes about our analyses of these
two very different data sets are in order. Pronunciation
and intelligibility of stimuli in the recognition task vs. the
conversational speech differ enormously (see e.g.
Johnson, 2004; Keune, Ernestus, Hout, & Baayen, 2005).
Conversational speech is produced far more rapidly and
contains far more contextual clues than laboratory speech.
The differences in the time available for utterance planning
and articulation undoubtedly affect what kinds of lexical
information can be reflected in conversational speech vs.
the recorded stimuli for the recognition task. Indeed,
Gahl et al. (2012) speculated that some of the differences
between effects of phonological neighborhood density in
single-word production tasks vs. conversational speech
may be due to the different temporal demands of the tasks.
We return to these caveats and what we see as fruitful
directions for future research in the Discussion.

Background: phonological neighborhood density in
recognition and production

The core empirical fact that earned phonological neigh-
borhood density its place among lexical variables of inter-
est to psycholinguists is that words in dense phonological
neighborhoods (those with many neighbors) are more dif-
ficult to recognize, other things being equal, than words in
sparse neighborhoods (Goldinger, Luce, & Pisoni, 1989;
Luce & Pisoni, 1998; Luce, Pisoni, & Goldinger, 1990;
Vitevitch & Luce, 1998). That observation provided the
empirical foundation of a highly influential model of spo-
ken word recognition, the Neighborhood Activation Model
(NAM, Luce & Pisoni, 1998) and for a large body of research
on recognition and production (see e.g. Chen & Mirman,
2012, and Vitevitch & Luce, 2016 for overviews and
discussion).

The observation that words in dense neighborhoods
tend to be difficult to recognize fits a widely-held
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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intuition: that neighborhood density effects arise because
phonological neighbors tend to sound similar to one
another. The more neighbors a word has, the more words
it resembles, increasing the difficulty of the categorization
task faced by the listener. However, from the start, mea-
sures of phonological neighborhood density were calcu-
lated in different ways, not all of which made reference
to what words sounded like. The original instantiation of
the NAM (Luce & Pisoni, 1998) employed the Frequency-
Weighted Neighborhood Probability Rule (FWNP), which
uses forced-choice phoneme confusions in noise to quan-
tify the auditory confusability of a target word with all
other words in the lexicon (Luce & Pisoni, 1998, Experi-
ment 1). That is to say, the method of estimating the lexical
‘‘competition” faced by a target word took into account the
fact that some segments are more confusable than others,
as well as the fact that some words are more frequent than
others. Furthermore, the FWNP took into account a target
word’s segment-by-segment confusability with all other
words in the lexicon, not just those that differed from the
target in one segment. However, when predicting auditory
lexical decision and naming latencies in the absence of
background noise, Luce and Pisoni (1998, Experiments 2
and 3) used the number of one-phoneme-difference neigh-
bors as an estimate of phonological neighborhood density,
rather than the segment confusion matrices (which rely on
segments presented in background noise). By that crite-
rion, all words differing from a target word by exactly
one segment are target neighbors – and words that differ
in more than one segment from the target are not. Numer-
ous subsequent related studies, both in the recognition lit-
erature and the production literature, also use that
shortcut estimate of phonological neighborhood density,
sometimes weighted by lexical frequency, to quantify lex-
ical competition (Cluff & Luce, 1990; Dell & Gordon, 2003;
Gordon, 2014; Munson & Solomon, 2004; Scarborough,
2010; Scarborough, 2013; Vitevitch & Luce, 1998).

Alongside evidence for an inhibitory effect of phonolog-
ical neighborhood density on spoken word recognition,
there is evidence for a facilitative effect of high neighbor-
hood density on spoken word production (Harley and
Bown, 1998; Gordon, 2002; Marian & Blumenfeld, 2006;
Peramunage, Blumstein, Myers, Goldrick, & Baese-Berk,
2010; Vitevitch, 1997, 2002; Vitevitch & Sommers, 2003).
Dell and Gordon (2003) model this pattern of high PND
facilitating word production, but inhibiting word recogni-
tion, as resulting from interactive feedback between lexical
and segmental levels, consistent with Dell’s interactive
two-step model of lexical access and retrieval (Dell,
1986; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997):
In production, feedback from phonological neighbors
boosts target word activation, which is already high, due
to the initial jolt of activation from the semantic level.
Recognition, on the other hand, begins with activation of
phonological segments, boosting the activation of target
words, but also of other words containing those same
phonological segments – leading to a net loss in target acti-
vation that is especially perilous when a target has many
phonological neighbors. Chen and Mirman (2012) argue,
on the basis of simulations in a domain-general interaction
and competition model, that the reported pattern of
oods: Phonological and perceptual neighborhood density in lexical
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facilitation and inhibition is predicted in any model in
which multiple representations are activated in parallel:
Weak competition (such as that posed by phonological
neighbors in spoken word production) yields a net benefit
for the target, whereas strong competition (such as that
posed by phonological neighbors in spoken word recogni-
tion) results in target inhibition. More recently, Chen and
Mirman (2015) have shown that phonological neighbors
produce a facilitative effect even in spoken word recogni-
tion when semantic context weakens the activation of
phonological neighbors. Importantly for the current dis-
cussion, these explanations make no reference to auditory
or articulatory similarity; the amount of competition
among jointly activated phonological segments does not
depend on how similar the segments are.

Complicating matters is the fact that phonological
neighborhood density is highly correlated with several
other variables, including lexical frequency (Frauenfelder,
Baayen, Hellwig, & Schreuder, 1993), various measures of
phonotactic probability (such as the probability of a given
segment appearing in a given position, possibly condi-
tioned on the segment preceding or following it;
Vitevitch, Armbrüster, & Chu, 2004; Vitevitch & Luce,
2005), onset density (i.e. the proportion of neighbors with
the same initial segment as a target word), and the ‘spread’
of the neighborhood (i.e. the number of segmental posi-
tions at which neighbors can be formed; Vitevitch, 2007).
Each of these variables affects speech production, but not
all of them do so in the same direction as phonological
neighborhood density. While high lexical frequency and
phonotactic probability are associated with shorter nam-
ing latencies, high onset density has been found to elicit
longer naming latencies when phonological neighborhood
density is controlled for (Vitevitch et al., 2004). Several
related models similarly predict patterns that take into
account the left-to-right nature of word recognition
(Allopenna, Magnuson, & Tanenhaus, 1998; Magnuson,
Dixon, Tanenhaus, & Aslin, 2007) and production (Sevald
& Dell, 1994). For example, Sevald and Dell (1994) argue
that phonological selection is a serial process: Following
lexical selection and during phonological encoding, target
segments are accessed in the order in which they are to
be articulated. Sevald and Dell (1994) found that speakers
were able to repeat pairs of words more quickly when the
words differed in their initial consonants (e.g. PICK-TICK)
than when the difference was in the final consonants
(e.g. PICK-PIN). Sevald and Dell (1994) interpret that obser-
vation as an effect of shared segments producing lexical
competition: Words that share initial segments act as
strong competitors of one another. That interpretation is
consistent with Chen and Mirman (2015)’s simulations:
While high neighborhood density generally yields target
facilitation in word production, that facilitation gives way
to inhibition at a point when the only remaining competi-
tors are strong. That is, at the point when the initial
two segments have been selected, competition between
pick and pin is strong. In summary, the presence of multi-
ple correlated variables (such as neighbors overlapping
in onsets in a specific stimulus set or in the lexicon
generally, as well as phonotactic probability and the posi-
tions in a word at which neighbors can be formed among)
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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considerably complicate the interpretation of observed
effects.

Evidence for a facilitative effect of high phonological
neighborhood density on spoken word production is still
relatively sparse, compared to the copious literature on
its inhibitory effects on spoken word recognition, and the
idea remains somewhat controversial. More research is
needed on individual effects of variables that are correlated
with phonological neighborhood density. For example,
Sadat, Martin, and Costa (2014) argue that high phonolog-
ical neighborhood density is associated with longer, not
shorter latencies in picture naming. However, Sadat et al.
report that the correlation between PND and ‘onset den-
sity’, i.e. the number of words that share the initial seg-
ments with the target, was .97 in their data set of
Spanish nouns. Sadat et al.’s observation of longer latencies
with increasing phonological neighborhood density may
therefore be due to onset density, shown in previous stud-
ies to yield an inhibitory effect on spoken word production
(cf. Vitevitch et al., 2004).

Effects of phonological neighborhood density on
pronunciation variation

The inhibitory effects of phonological neighborhood
density on word recognition inspired a line of inquiry in
studies of pronunciation variation, exploring the possibil-
ity that talkers might pronounce words in dense neighbor-
hoods more clearly than words in sparse neighborhoods, to
compensate for the recognition difficulty (Munson &
Solomon, 2004; R. Wright, 2004). Consistent with this pos-
sibility, a number of studies reported that words in dense
phonological neighborhoods are hyperarticulated and/or
phonetically enhanced compared to words in sparse
phonological neighborhoods, as evidenced by longer VOTs
(Baese-Berk & Goldrick, 2009; Fox, Reilly, & Blumstein,
2015; Goldrick, Vaughn, & Murphy, 2013), increased nasal
coarticulation (Scarborough, 2004, 2010, 2013), or
increased vowel dispersion (Munson, 2007; Munson &
Solomon, 2004; Wright, 2004; but see Flemming, 2010,
and Gahl, 2015, for critiques and reanalyses of several of
these studies).

However, not all studies of phonological neighborhood
density effects on pronunciation report high density to be
associated with hyperarticulation or lengthening. Gahl
et al. (2012) examined the effects of phonological neigh-
borhood density on word durations and on vowel disper-
sion (Euclidean distance from a talker’s average first and
second vowel formants) in the Buckeye corpus of sponta-
neous speech (Pitt et al., 2007). Gahl et al. (2012) found
that CVC (consonant-vowel-consonant) words tended to
be shorter with increasing phonological neighborhood
density, when other factors affecting word duration were
controlled in a mixed-effects regression model. In addition,
vowels in high-density words tended to be more central-
ized in F1/F2 space, i.e. more schwa-like, than vowels in
low-density words. Since shortening and vowel centraliza-
tion are also often observed in high-frequency words,
which are retrieved more quickly than low-frequency
words, Gahl et al. (2012) interpreted these findings as part
of a broader pattern of phonetic reduction of words whose
oods: Phonological and perceptual neighborhood density in lexical
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retrieval is facilitated at early stages of language produc-
tion: In other words, reduction of words with high phono-
logical neighborhood density is attributed by these authors
to be consistent with, and a consequence of, the facilitation
in lexical retrieval consistent with Chen & Mirman and Dell
& Gordon’s models.

Several variables correlated with phonological neigh-
borhood density have been explored in research linking
pronunciation variation to lexical retrieval. Yiu and
Watson (2015) recently demonstrated that initial overlap
of words was associated with a greater degree of lengthen-
ing of word durations compared to final overlap. Yiu and
Watson (2015) interpret that observation to result from
words with shared overlap (PICK-PIN) being strong com-
petitors of one another, as proposed in Sevald and Dell
(1994). The idea is that the phonological planning process
is slowed down while that competition is resolved.

As mentioned earlier, high phonological neighborhood
density has been found to be associated with phonetic
enhancement in a number of studies of voice onset times
(VOT). (Baese-Berk & Goldrick, 2009; Fox et al., 2015;
Goldrick et al., 2013 found longer VOTs in high-density
vs. low-density targets. The interpretation of those findings
is complicated by the presence of other correlated vari-
ables. Fricke, Baese-Berk & Goldrick (in press) evaluated
the relationship of minimal pair status (i.e. whether a
stop-initial target word had a neighbor differing only in
voicing of the initial stop, e.g. pig/big vs. peel/⁄beel), phono-
logical neighborhood density, and position-specific phono-
logical neighborhood density, i.e., the number of neighbors
that can be formed by changes at each position, on voice
onset times (VOT) in initial stop consonants. Although both
minimal pair status and phonological neighborhood den-
sity affected VOT when entered individually in a model
of VOTs, neither accounted for significant variance when
added to a model that included position-specific phonolog-
ical neighborhood density. This raises the possibility that
other reported effects of phonological neighborhood den-
sity on VOTs may likewise be due to position-specific mea-
sures, rather than phonological neighborhood density.

The search for lexical factors in pronunciation consti-
tutes a departure from a research tradition in which details
of pronunciation were either considered to be a matter of
late stages of the language production processes in serial
psycholinguistic models (such as the phonetic encoding
stage, Levelt & Wheeldon, 1994) or considered to be out-
side of the scope of psycholinguistic models altogether
(see Hickok, 2012, for an overview). (An early exception
to that strategy is Balota, Boland, & Shields, 1989, who
observed an effect of semantic priming on word durations).
The lion’s share of research on pronunciation variation has
focused on effects of syllable frequency, n-gram probability
(of segments and/or words), and phonotactic probability
(see e.g. Jurafsky, 2003, for an overview). Such effects are
well established, and there can be no doubt that word
duration is in part due to factors affecting late stages of
articulatory planning and motor execution, perhaps due
to the availability of pre-compiled motor plans for
frequently-produced syllables (cf. Cholin, Levelt, &
Schiller, 2006; Levelt, Roelofs, & Meyer, 1999; Levelt &
Wheeldon, 1994).
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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Since syllable frequency and lexical frequency are
highly correlated, particularly in the case of monosyllabic
words, many effects of lexical frequency on pronunciation
can in principle be explained as effects of articulatory rou-
tinization (though not all; see Gahl, 2008, for discussion).
Since the words in our datasets are monosyllables, it is
questionable whether effects of syllable frequency and lex-
ical frequency can be disentangled in our data. We see no
reason to doubt the effects of phonotactic probability, syl-
lable frequency, or lexical frequency on word durations. As
explained below, we included syllable frequency in our
models of word duration; given the high correlation with
lexical frequency, we did not attempt to disentangle effects
of syllable frequency from effects of word frequency.

Limitations of phonological neighborhood density as a
measure of lexical confusability

As successful as phonological neighborhood density has
proven to be in studies of word recognition, it has its lim-
itations. The first is that the most commonly-used neigh-
borhood density metrics categorically divide words into
target neighbors vs. ‘‘non-neighbors.” That categorical divi-
sion can have unexpected and undesirable consequences,
depending on the research question at hand: Some words
within a set of neighbors might be expected to be more
perceptually similar to the target word than others – and
words outside a target’s neighborhood may be more per-
ceptually similar to the target than some target neighbors.
For example, both seen and shun are neighbors of sun, but
shun may be expected to be more highly confusable with
sun because [ʃ] and[s] are perceptually similar, whereas
seen is likely to be less confusable with sun because [i]
and [ʌ] are less similar. Another potential limitation is that
words that differ from the target by more than one pho-
neme are not included in measures of lexical density. For
instance, fish and this are not neighbors by a one-
phoneme difference criterion, but it would be reasonable
to expect some confusability between the two words.
Indeed, some words that differ by multiple phonemes (fish
and this) may be more confusable than words that differ by
only one (seen and sun). In part, these are limitations of the
one-phoneme-difference shortcut measure: The FWNP
(Luce & Pisoni, 1998, Experiment 1) assigns weights to tar-
get competitors based on auditory confusability of seg-
ments and takes into account all words in the lexicon,
not just those words that differ from the target in one
phoneme.

Neighborhood density metrics using confusion proba-
bilities, such as the FWNP, have another limitation, owing
to the fact that these measures fail to take into account the
number of perceptually similar alternatives for each target
segment (Iverson, Bernstein, & Auer, 1998). For example, a
confusion matrix may reveal that [z,ð] are perceptually
similar to one another, and [f,s,ʃ,h] are also perceptually
similar to one another. If [z,ð]) are confused on 50% of tri-
als, and [f,s] are confused on 25% of trials, then based on p
(z|ð) vs. p(f|s), [z] and [ð] will be judged to be more ‘‘sim-
ilar” than [f] and [s] (Iverson et al., 1998). When these val-
ues are weighted by word frequency and used to compute
FWNP, individual target-competitor comparisons will be
oods: Phonological and perceptual neighborhood density in lexical
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distorted by the number of response alternatives and no
longer be based solely on the frequency-weighted percep-
tual similarity of the two words.

To correct this problem, Iverson et al. (1998) introduced
Phi-square, which can be used to quantify segment simi-
larity while taking into account the number of perceptually
similar alternatives. The Phi-square statistic is quantified
as follows:

U2 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi�EðxiÞÞ2
EðxiÞ þP ðyi�EðyiÞÞ2

EðyiÞ
N

s

where xi and yi are the frequencies that phonemes x and y
were identified as phoneme i in a forced choice identifica-
tion task, E(xi) and E(yi) are the expected frequencies of xi
and yi if x and y were perceptually identical, and N is the
total number of responses to xi and yi. If x and y are percep-
tually identical, they should be expected to be identified as
members of a phoneme category equally often. Therefore,
the expected frequencies, E(xi) and E(yi), are the average
of the frequencies with which phonemes x and ywere each
identified as category i, because hypothetically, if [z] and
[ð] were perceptually identical, participants should choose
evenly between them when making a phoneme identifica-
tion. Confusion probabilities quantify how regularly two
phonemes are confused for one another (i.e., a single cell
within a confusion matrix); the Phi-square value quantifies
how similar the pattern of responses to the two phonemes
are (i.e., comparing two rows in a confusion matrix). Using
the entire distribution of responses for two phonemes
negates the problem that the number of likely alternatives
interacts with response probabilities. Phi-square values
thus provides a measure of perceptually-based target com-
petition that avoids the undesirable conclusion that highly
ambiguous phones are less confusable than less ambiguous
ones.

A second strength of using Phi-square values rather
than confusion probabilities (as FWNP does) is that it
reduces the influence of response biases that are present
in forced-choice phoneme confusion tasks. If a participant
disproportionately chooses a phoneme response for rea-
sons that are not related to the task (e.g., always guessing
[g] when unsure), it generates artifacts in the probability
data. Phi-square values avoid these artifacts by evaluating
the similarity of two phoneme response distributions,
rather than simply evaluating the likelihood that two pho-
nemes will be confused (see Iverson et al., 1998 and Strand,
2014).

Once the similarity of phoneme pairs has been estab-
lished, word-level similarities may be calculated using
the position-specific Phi-square values for a target and
competitor. For example, the predicted confusability of
‘‘cat” and ‘‘cup” is quantified as U2(k|k) ⁄U2(æ|ʌ) ⁄U2(t|p).
Following the method of calculating FWNPs (Luce &
Pisoni, 1998), Strand and Sommers (2011) calculated the
perceptual similarity of each target word with every other
word in a reference lexicon, and summed these values to
obtain a measure of density called ‘‘Phi-square density.”
Critically, similarity values can be calculated between
word pairs that differ by multiple phonemes (e.g., fish
and this, to return to the example above), thereby
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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removing the distinction between ‘‘neighbors” and ‘‘not
neighbors”; in Phi-square density (as in Luce & Pisoni’s
FWNP), all words are allowed to compete. As a conse-
quence, a word can have a phonological neighborhood
density (PND) of 0, but still have high Phi-square density,
if its segments are confusable with other segment combi-
nations that also form words in the lexicon.

Phi-square density predicts additional variance in spo-
ken word recognition beyond that accounted for by PND
or by continuous measures of lexical competition based
on confusion probabilities (Strand, 2014; Strand &
Sommers, 2011). These studies suggest that the success
of PND at predicting spoken word recognition accuracy
may be due in part to the fact that it is correlated with
and approximates measures of auditory confusability.
However, Strand and Sommers (2011) did not also evalu-
ate the influence of other measures that correlate with
PND, such as syllable frequency. This leaves open the pos-
sibility that the improvement in predicting variance in
spoken word recognition was not actually due to
Phi-square density, but to other syllable-level, lexical, or
segmental properties.
Aims and predictions

The goal of the present study is to model the effects of a
variables targeting auditory vs. segment-based phonologi-
cal neighborhood density on word recognition and produc-
tion. We do so by modeling variation in word duration and
recognition accuracy in two datasets that have figured in
discussion of effects of phonological neighborhood density,
but that so far been analyzed only from the perspective of
perception (Slote, Strand, & a new timing method. Behavior
Research Methods, in press) or production (Gahl et al.,
2012), but not both.
Methods

Data sets

Spoken word recognition data were obtained from an
existing dataset (Slote & Strand, in press). These data
included word recognition in noise scores of 400
consonant-vowel-consonant (CVC) words by 53 college-
aged listeners with normal hearing. Six of those words
were excluded from the present analysis because they
did not appear in the SUBTLEXUS database (Brysbaert &
New, 2009). Excluding trials on which participants failed
to respond left 19,860 observations. Words were presented
in a background of six-talker babble at a signal to noise
ratio of 0 at approximately 65 dB. Each word was pre-
sented individually with no carrier phrase and participants
were instructed to type what they heard.

Word duration data were obtained from the Buckeye
Corpus of conversational speech (Pitt et al., 2007; Pitt,
Johnson, Hume, Kiesling, & Raymond, 2005), which con-
sists of one hour of spontaneous speech from each of 40
talkers (20 male, 20 female; 20 under 40 years of age, 20
over 40 years of age) from Columbus, Ohio. Target words
were all monomorphemic CVC content words in the
oods: Phonological and perceptual neighborhood density in lexical
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corpus, with the following exclusion criteria: (1) Words
which did not appear in the lexical databases used for esti-
mating syllable frequency, PND, or auditory confusability,;
(2) Word forms that are frequently used as function words
or as discourse markers, such as right or like; (3) Ortho-
graphic forms with multiple phonemic representations,
such as read and lead; (4) Utterance-initial and utterance-
final word tokens, as well as word tokens immediately fol-
lowing or immediately preceding filled pauses such as um
and uh; (5) Words all of whose tokens had bigram proba-
bilities of 1, i.e. probabilities given the immediately pre-
ceding or following word, which often represent parts of
fixed expressions and/or hapax legomena in the corpus.
The final data set contained 477 word types, represented
by 11,095 tokens.

Our dataset only contains monosyllables, raising the
question whether the observed effects are informative
about speech perception and production more generally.
As an anonymous reviewer points out, the correlation
between lexical frequency and PND is approximately 0.5
in the 40,000 word dictionary of the English Lexicon Pro-
ject (ELP; Balota et al., 2007). In our sample, the correlation
was far lower than that (r = .13 in the recognition set and
.02 in the production set). The reason for the large differ-
ence is the relationship between word length and PND:
The 40,000-word ELP lexicon includes multisyllabic words,
whereas our sample is restricted to CVC monosyllables.
Long words tend to be lower in frequency and generally
have fewer neighbors than short ones – by necessity, since
long words are less likely than short words to differ by
exactly 1 phone. In the ELP, 1-syllable words have an aver-
age of 12.4 neighbors. For 2-syllable words, the average
drops to 2.1, and 3-syllable words have only .3 neighbors
on average; see also (Frauenfelder et al., 1993). Despite
the large differences in neighborhood size for long vs. short
words, monosyllables form an important subset of the
words speakers and listeners typically encounter. For
example, 81% of word tokens in the Switchboard corpus
of conversational speech are monosyllables (Greenberg,
1998). We also note that, although the majority of work
on lexical competition has been done on monosyllabic
words, bisyllabic words show similar effects of lexical
competition as monosyllabic words (Vitevitch, Stamer, &
Sereno, 2008), with high density words being recognized
less accurately on a word recognition task and more slowly
on a lexical decision task. This suggests that, while the pro-
cessing of multisyllabic words is certainly a topic awaiting
much more research, the properties of monosyllabic words
form a useful starting point.
Description of variables in the regression models

To assess the influence of Phi-square density and PND
on the two outcome variables, we fitted models containing
these variables along with other known predictors of,
respectively, recognition accuracy and word durations.

Lexical frequency. Word frequency of occurrence values
were obtained from the SUBTLEXUS database (Brysbaert &
New, 2009) and represent the log-transformed number of
times a given word appeared per million words.
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
production and perception. Journal of Memory and Language (2016), htt
Baseline duration. Some segments are inherently longer
than others. For example, tense vowels tend to be longer
than lax vowels, and nasal stops tend to be longer than
voiceless oral stops (Bent, Bradlow, & Smith, 2008;
Crystal & House, 1988; Peterson & Lehiste, 1960; Umeda,
1977). In addition, segment durations vary with phonolog-
ical context, for example word length, position within a
word, or (in the case of vowels) voicing of a following con-
sonant. To control for the ‘inherent’ duration of the target
words, i.e. the duration they might have if factors such as
lexical frequency, neighborhood density, speaking rate,
and so forth, had no effect, we estimated their ‘baseline’
durations, as follows: We calculated the median duration
of each consonant and vowel in the Buckeye target words
(i.e. CVC content words in fluent speech, using the criteria
for inclusion described above). For consonants, we calcu-
lated separate medians for tokens in initial vs. final posi-
tion. For vowels, we calculated separate median
durations for tokens preceding voiced vs. voiceless conso-
nants. As expected, the by-segment medians differed sub-
stantially based on position and final voicing. The ‘‘baseline
duration” of each target word was the summed median
duration of its segments, conditioned on position (initial
vs. final consonants) and final voicing. Baseline durations
were log transformed.

This estimate of baseline duration differs from that in
Gahl et al. (2012), who calculated the mean (not the med-
ian) duration of each segment type across the entire Buck-
eye corpus, i.e. including tokens before disfluencies. Means
are unduly affected by outliers (particularly for duration
measures, which cannot be negative). Moreover, tokens
before disfluencies are often substantially longer than seg-
ments in the subcorpus of target word productions. The
baseline measure used in the current work is more firmly
grounded in research on phone durations, reducing the
possibility that variability due to position and final voicing
might yield spurious effects of PND or other lexical
variables.

Bigram probability given the word preceding/following the
target: The (log-transformed) probability of a word, given
the immediately preceding or following word in an utter-
ance, which is a known predictor of word durations in con-
nected speech (Bell et al., 2003; Fosler-Lussier & Morgan,
1999). Bigram probabilities were estimated based on the
entire Buckeye corpus. Word types with average bigram
probabilities of 1 were excluded from further analysis.

Speech rate (before/after): The (log-transformed) speak-
ing rate, measured as syllables per second, in the stretch
of speech from the preceding utterance boundary up to
the target (Speech rate before) and from the target up to
the end of the utterance (Speech rate after).

Syllable frequency (type, token). Syllable frequency was
estimated using the method described in Cholin et al.
(2006): Syllable type frequency was estimated as the num-
ber of word types in the CELEX data base (Baayen,
Piepenbrock, & van Rijn, 1993) containing a given syllable.
Syllable token frequency was estimated as the summed
lexical frequency (according to CELEX) of all words con-
taining a given syllable.

Phonological Neighborhood Density (PND). We calculated
the number of words in the reference lexicon (Balota et al.,
oods: Phonological and perceptual neighborhood density in lexical
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Table 1
Pairwise (Spearman) correlations among lexical variables in the recognition data set (n = 394).

Lexical frequency Syllable type frequency Syllable token frequency Phi-square density

Lexical frequency
Syllable type frequency 0.54
Syllable token frequency 0.83 0.68
Phi-square density 0.04 0.16 0.18
PND 0.13 0.35 0.21 0.25
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2007) that could be made by a single phoneme substitu-
tion from the target word. Although the substitution-only
method for calculating phonological neighborhood density
is less common than the method also counting words that
can be made by addition or deletion from the target word,
we used the substitution-only method here so that the ref-
erence lexicon was the same for calculating PND as calcu-
lating Phi-square density (see below). The recognition task
on which the confusability measures for the Phi-square
density metric is based did not allow for the possibility
of confusing a segment with the ‘‘null segment” (see Luce
& Pisoni, 1998), as participants knew there was some seg-
ment in each position. Values from the substitution-only
method are highly correlated with values from the substitu
tion/addition/deletion method (r = .98 for all CVCs in the
reference lexicon; Strand, 2014), so this change is not likely
to substantially influence the results. In the discussion to
follow, we will use the abbreviation PND to mean the num-
ber of words that differ from a target in exactly one
segment.

Phi-square density. Phi-square density was calculated
following the method described in the introduction
(Strand, 2014; Strand & Sommers, 2011). The Phi-square
density of a word is the sum of a quantity indexing the
pairwise perceptual similarity between the target word
and every other word in the reference lexicon.

Tables 1 and 2 show the pairwise correlations of the
lexical variables in the sets of 394 and 469 word types,
respectively. It will be observed that PND and Phi-square
density are only moderately correlated (r = .25). On the
other hand, lexical frequency and syllable frequency were
strongly correlated (type frequency: .54; token frequency:
.83). The strong correlation of lexical frequency and sylla-
ble frequency was expected in our word list of monosyl-
labic words.
1 In an earlier version of this work, we fitted a ‘‘baseline” model
containing non-lexical variables (e.g. local speaking rate and a baseline
measure of expected word durations based on average segment duration)
and compared that baseline to models containing one additional predictor
at a time: E.g. the baseline was compared to the baseline plus Phi-square
density, or the baseline plus syllable frequency. In other words, PND,
Phi-square density, and syllable frequency did not compete with one
another. The pattern of significant effects of lexical frequency, Phi-square
density, and PND was the same as the results presented here.
Modeling strategy

Wewished to understand the role of perceptual similar-
ity (Phi-square density), segmental neighborhood struc-
ture (PND), and articulatory fluency (lexical and syllable
frequency) in word durations and spoken word recogni-
tion. We fitted models of word duration and recognition
accuracy containing variables intended to tap these three
potential sources of variation in recognition difficulty and
pronunciation. A total of 201 word types appeared in both
data sets (10,070 tokens in the recognition task, 7044
tokens in the production set). For a side-by-side compar-
ison of the predictors of interest on the same set of words,
we fitted models of recognition accuracy and word dura-
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tion to the data sets using the 201 words for which both
recognition and pronunciation data were available. Each
model contained the variables targeting segmental (PND),
perceptual (Phi-square density) and articulatory (Feature
similarity, syllable frequency) similarity to other words,
along with ‘baseline’ predictors that are known to affect
spoken word recognition accuracy and word duration. In
addition, we tested whether the pattern of significant
and non-significant effects observed in the set of 201
words generalized to the larger set, to reduce the possibil-
ity that patterns in smaller set were due to idiosyncrasies
of the 201 words.

Statistical treatment of the data

We fitted mixed-effects regression models of recogni-
tion accuracy and word durations. Two related sets of
issues in regression modeling that have received a great
deal of attention among psycholinguists concern the spec-
ification of the random effects structure (Barr, Levy,
Scheepers, & Tily, 2013; Gelman & Hill, 2006; Bates,
Kliegl, Vasishth & Baayen, 2015) and the order of entry or
removal of variables (both in the fixed effects structure
and the random effects). In the models reported here, we
entered all fixed effects simultaneously, as opposed to
entering or removing variables in a stepwise fashion.1

For the random effects structure, we used forward entry
of (by-target word and/or by-participant) random slopes
corresponding to the variables in the fixed effects. In many
cases, including random slopes resulted in problematic
models, either due to zero variances or to perfect correla-
tions among variance components, or else resulted in fail-
ure to converge. To satisfy our (and a reviewer’s) curiosity
about the effect forward entry vs. backward reduction in
the random effects structure, we explored forward entry
and backward reduction; in no case did the pattern of sig-
nificant fixed effects of the critical variables change as a
result of the choice of method of entry in the random
effects structure. The models reported here are the models
with the maximal random effects structure that appeared
to be supported by the data, on the basis of the variances
and correlations in the random effects. Observations with
oods: Phonological and perceptual neighborhood density in lexical
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Table 2
Pairwise (Spearman) correlations among the lexical variables in the production data set (n = 469).

Baseline
duration

Lexical
frequency

Syllable type
frequency

Syllable token
frequency

CV
biphone

VC
biphone

PND

Baseline duration
Lexical frequency �0.14
Syllable type frequency �0.16 0.38
Syllable token frequency �0.21 0.74 0.57
Initial (CV) biphone

probability
�0.04 �0.05 0.19 0.01

Final (VC) biphone
probability

�0.27 0 0.24 0.07 0.32

PND �0.23 0.02 0.24 0.11 0.38 0.44
Phi-square density �0.31 0.08 0.1 0.19 0.04 0.04 0.26

2 We thank Florian Jaeger for raising this point.
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large residuals (more than 2.5 SDs) were removed at each
modeling step and the model refitted without those cases.
Continuous variables were log-transformed where doing
so resulted in more nearly normal distributions. All numer-
ical variables were centered around their means. Treat-
ment coding was used for all factors.

The criterion variable in the word recognition data was
accuracy (‘‘correct” vs ‘‘incorrect”). These analyses were
completed using logit mixed-effect models with a binomial
distribution. The same approach to the random effects
specification was used in the models of recognition accu-
racy and the models of word duration. All statistical anal-
yses were performed using R (R Development Core Team,
2008) and the R package lme4 for mixed-effects modelling
(Bates & Maechler, 2010, version 1.1–7, 2014).

Results

Recognition

The model of word recognition accuracy for the set of
201 words for which both recognition and production data
were available is summarized in Table 3 (left columns). The
pattern of significant effects was similar to those observed
in the larger set of 394 (right columns). Along with the
expected facilitatory effects of lexical frequency,
Phi-square density and PND emerged as significant predic-
tors of recognition accuracy; words with more lexical com-
petition by either measure showed lower accuracy in the
set of 394 words. In the set of 201 words, the effect of
PND was marginally significant (p = �.06). Syllable token
frequency (residualized against lexical frequency) failed
to produce a significant effect in either dataset. The stron-
gest correlations among the fixed effects estimates in the
model using 201 word types was that between the esti-
mate of the effect of Phi-square density and PND
(r = �.29). All other correlations among fixed effects had
absolute values smaller than .16. The strongest correla-
tions among the fixed effects estimates in the model using
394 word types were those between the estimate of the
effect of Phi-square density and PND (r = �.24) and
between Phi-square density and syllable token frequency
(r = �.24). All other correlations among fixed effects had
absolute values smaller than .12. It will be observed that
the models do not include random slopes. In an earlier ver-
sion of the current work, we did include by-participant
random slopes for lexical frequency and PND (the maximal
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random effects structure supported by the data). The pat-
tern of significant fixed effects was identical to the model
reported here. The corresponding random slopes were
not supported by the available data for the model of word
duration, complicating the comparison of the significant
predictors of recognition vs. production.2 We report the
models with identical random effects structure here, so as
to avoid creating the impression that the behavior of the
fixed effects (particularly for the critical variables Phi-
square density and PND) was due to differences in power
arising from differences in the random effects structure.

A follow-up model using (residualized) syllable type
frequency (i.e. the number of word types containing a
given syllable), rather than syllable token frequency (i.e.
the summed frequency of all words containing a given syl-
lable) also failed to reveal a significant effect of syllable fre-
quency apart from lexical frequency. The significant effect
of PND diverges from prior work, which showed that PND
failed to account for unique variance in word recognition
accuracy when Phi-square density was controlled for
(Strand & Sommers, 2011). However, the data in Strand
and Sommers (2011) included fewer target words. In an
earlier version of the current work, using only 118 word
types, we observed that PND ceased to be significant when
Phi-square density was entered into the model, consistent
with Strand and Sommers (2011). Therefore, effects of PND
that are separate from Phi-square density may be subtle
and require a large data set to obtain.

Word duration

The models of word duration for the 201 ‘‘shared” tar-
get words and for the total set of 469 words are summa-
rized in Table 4. In both models, there were significant
effects of baseline duration, forward and backward bigram
probabilities, and speaking rate before and after the target,
in the expected direction: Increased baseline duration was
associated with longer word durations. High lexical fre-
quency, high bigram probability and high contextual
speaking rate were each associated with shorter word
durations. Residual syllable token frequency failed to pro-
duce a significant effect. Phi-square density failed to give
rise to a significant effect in either model. PND (counting
only substitution-related neighbors) also failed to give rise
to a significant effect in the model of 201 words, but did do
oods: Phonological and perceptual neighborhood density in lexical
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Table 3
Summary of the models of word recognition accuracy, using 201 (left columns) and 394 (right columns) word types.

201 Word types (10,070 observations) 394 Word types (19,860 observations)

b (SE) z p b (SE) z p

Fixed effects
(Intercept) 0.429 (0.108) 3.96 <.0001 0.244 (0.088) 2.77 0.01
Lexical frequency 0.301 (0.129) 2.327 0.02 0.525 (0.074) 7.09 <.0001
Syllable token frequencyres �0.050 (0.094) �0.534 0.59 0.052 (0.047) 1.12 0.26
PND �0.033 (0.018) �1.866 0.06 �0.041 (0.013) �3.30 <.0001
Phi-square density �0.640 (0.257) �2.491 0.013 �0.852 (0.188) �4.530 <.0001

Variance SD Variance SD

Random effects
Target (intercept) 1.6930 1.301 1.8855 1.3731
Participant (intercept) 0.1369 0.370 0.1354 0.3679

Table 4
Summary of the models of word duration, using 201 (left columns) and (right columns) word types.

201 Word types 477 Word types

b t b t

Fixed effects
(Intercept) 0.074 (0.018) 4.03 0.102 (0.016) 6.28
Baseline duration (log) 0.779 (0.062) 12.53 0.707 (0.044) 16.23
Backward bigram (log) �0.024 (0.002) �13.77 �0.025 (0.001) �18.17
(Backward bigram, log)2 0.005 (0.001) 6.19 0.003 (0.001) 5.6
Forward bigram (log) �0.012 (0.002) �6.16 �0.012 (0.002) �7.73
Speech rate, after (log) �0.147 (0.009) �15.58 �0.136 (0.008) �17.69
Speech rate, before (log) �0.087 (0.009) �10.1 �0.083 (0.007) �11.33
(Speech rate, before (log))2 �0.045 (0.013) �3.5 �0.025 (0.011) �2.31
Lexical frequency �0.028 (0.006) �4.99 �0.032 (0.004) �7.68
Syllable token frequencyres �0.007 (0.01) �0.71 �0.009 (0.007) �1.28
PND �0.001 (0.002) �0.97 �0.002 (0.001) �2.05
Phi-square density 0.021 (0.024) 0.9 0.009 (0.017) 0.54

Variance SD Variance SD

Random effects
Target (intercept) 0.007 0.085 0.0078 0.088
Speaker (intercept) 0.0089 0.0941 0.0079 0.089
Residual 0.0523 0.2287 0.0584 0.242
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so in the larger data set. In an earlier version of the current
work, we included the neighbors related to the target
through substitution, addition, and deletion of segments
in our models of word durations. That measure reached
significance in the set of 201 words (b = �0.002,
SE = 0.001, t = �1.96), as well as in the larger dataset
(b = �0.003, SE = 0.001, t = �2.97). The pattern of signifi-
cant effects, including the non-significance of Phi-square
density, was otherwise identical in the models with
substitution-only vs. substitution-deletion-addition neigh-
bors. By either measure, higher neighborhood density was
associated with shorter word durations. Phi-square density
failed to give rise to a significant effect in all models of
word duration, regardless of the size of the data set.

The strongest correlations among the fixed effects esti-
mates for both data sets were between lexical frequency
and the Intercept (�.29 for the smaller set and �.25 for
the larger set) and between Phi-square density and the
baseline estimate of word duration (.34 and .31, respec-
tively). Follow-up models using (residualized) syllable type
frequency, rather than syllable token frequency, failed to
reveal a significant effect of syllable frequency apart from
lexical frequency.
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The baseline duration variable in the model of word
duration is necessary, but raises a potential problem,
pointed out by a reviewer. The variable is necessary
because segments differ in their ‘inherent’ duration, as well
as in the degree to which their duration varies. For exam-
ple, nasal stops are much more variable in duration than
taps. Unsurprisingly, the duration of a word that one might
expect, given the segments it contains, is in fact a strong
predictor of actual word duration. A model of word dura-
tion that ignored segmental content would strike us as
misguided. However, the baseline duration variable is, by
necessity, correlated with Phi-square density, PND, and
any other variable that is partly predictable from segmen-
tal content. The correlation between Phi-square density
and baseline duration arises because both are ultimately
based on properties of segments. For example, sibilants
are fairly confusable with one another. Words containing
sibilants therefore tend to have higher Phi-square density
than words that do not contain sibilants – although not
always and not necessarily. The correlation between base-
line duration and Phi-square density means that part of the
variance potentially attributable to Phi-square density is
accounted for by the baseline. In order to explore which
oods: Phonological and perceptual neighborhood density in lexical
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Table 5
Summary of effects of lexical variables on recognition accuracy and word duration in two word lists (n = 394 and n = 469) and their intersection (n = 201). Non-
significant effects are marked ‘‘n.s.”.

Perception Production

n = 394 n = 201 n = 469

Lexical frequency Increased accuracy Increased accuracy Shortening Shortening
Phi-square density Decreased accuracy Decreased accuracy n.s. n.s.
PND Decreased accuracy Decreased accuracy n.s./shortening Shortening
Syllable frequency n.s. n.s. n.s. n.s.
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of the two variables (baseline duration vs. Phi-square den-
sity) best explains the variability in word duration that
could in principle be explained by either, we fitted a model
containing one variable (baseline duration or Phi-square
density) and then compared that model to a model con-
taining the other variable, as well. The results indicated
that baseline duration, i.e. the duration of a word that
one might expect, given the segment it contains, was a
robust predictor of actual word duration, whereas
Phi-square density was not.

There is a sizable body of evidence showing that phono-
tactic probability affects segment duration – and therefore,
potentially, word durations. For example, Kuperman,
Ernestus, and Baayen (2008) show that there is a robust
relationship between phonotactic probabilities (measured
as n-phones, i.e. n-grams of phones) and segment duration
in Dutch, English, German, and Italian spontaneous speech.
Phonotactic probability is also known to be correlated with
PND (Frauenfelder et al., 1993). This raises the possibility
that the effects of PND in our models could be due to
phonotactic probabilities. To explore this possibility, we
fitted models using biphone probabilities in place of and
alongside PND and/or syllable frequency and lexical fre-
quency. We used the phonotactic probabilities from the
Phonotactic Probability Calculator (Vitevitch & Luce,
2004). The effects of biphone probabilities were non-
significant, except in models excluding lexical frequency
and syllable frequency, i.e. when biphone probability was
the only variable capturing the probability of target strings
of segments. We interpret this pattern as indicating that
phonotactic probability is predictive of word durations,
and that PND has a significant effect on word durations
beyond the effect of combinations of segments captured
by biphone probabilities. One limitation of the biphone
probabilities used here, and possibly the reason for the
non-significance of biphone probabilities in the models
containing syllable frequency and word frequency, was
the fact that only within-word biphones were considered
(the probabilities associated with CV and VC in each tar-
get), as opposed to biphones across word boundaries, i.e.
taking into account the segments preceding and following
the target in each utterance. We suspect that word-in-
context biphones may very well yield an additional short-
ening effect, as observed in Kuperman et al. (2008).

We were also interested in seeing whether our data sets
gave any indication of an effect of syllable frequency
beyond the effect of lexical frequency. Therefore, we fitted
simple linear regression models predicting lexical fre-
quency from syllable frequency and vice versa. We then
added the residuals of those models to our mixed-effects
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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regression models. We found that residualized measures
of syllable frequency never predicted variability beyond
that attributable to lexical frequency.

Table 5 summarizes the pattern of significant effects of
variables related to neighborhood density in the models of
recognition and production.

Discussion

We assessed the ability of a segmental measure and a
perceptually-based measure of word form similarity to
predict two outcome variables – word durations in conver-
sational speech and spoken word recognition accuracy. The
phoneme-based measure (PND, i.e. phonological neighbor-
hood density estimated as the number of words differing
from the target in one segment) was a significant predictor
of both spoken word recognition accuracy and word dura-
tions. The perceptually-based measure (Phi-square den-
sity) was a significant predictor of spoken word
recognition accuracy, but not of spoken word durations.
We interpret the significant effect of PND in both the pro-
duction and the perception data sets as effects of lexical
neighbors that are not necessarily perceptually similar to
the target, but have segments in common with the target,
consistent with numerous previous studies of phonological
neighborhood density. We interpret the significant effect
of Phi-square density on spoken word recognition, but
not word durations, as reflecting an effect of ‘perceptual
neighbors’, i.e. words that sound similar to the target, on
recognition. Each of these conclusions has theoretical
implications.

The first conclusion – that phonological neighbors in
the lexicon affect articulatory detail – adds to the growing
literature documenting effects of early stages of language
production, such as lexical retrieval, on pronunciation
(Arnold, Kahn, & Pancani, 2012; Gahl, 2008; Goldrick
et al., 2013; Heller & Goldrick, 2014, 2015; Lam &
Watson, 2010; Wright, 1979; Fink & Goldrick, 2015;
Mousikou & Rastle, 2015). The idea that early stages of lan-
guage production affect spoken word durations in con-
nected speech is consistent with a more general line of
research demonstrating the role of ‘central’ representa-
tions and mechanisms on ‘peripheral’ processes such as
articulation and response execution generally. A similar
line of research is being pursued in research on typing
(Crump & Logan, 2010) and handwriting (Kandel,
Peereman, & Ghimenton, 2013; Kandel, Peereman,
Grosjacques, & Fayol, 2011; Roux, McKeeff, Grosjacques,
Afonso, & Kandel, 2013). Effects of strictly lexical proper-
ties on fine phonetic detail are consistent with cascading
oods: Phonological and perceptual neighborhood density in lexical
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or fully interactive models of language production, in
which articulation may proceed even as retrieval processes
are still ongoing.

The second conclusion confirms and extends previous
research showing that Phi-square density, a measure of
perceptual neighborhood density, produces an effect on
spoken word recognition over and above the effect of
PND (phonological neighborhood density based on seg-
ment substitution). Prior work (Strand & Sommers, 2011)
found that PND predicted word recognition accuracy when
Phi-square density was not included in the model, but the
effects of PND disappeared when Phi-square density was
included. The current study, however, found that the sig-
nificant effects of PND remained when Phi-square density
was included. A possible explanation for this discrepancy
is the larger dataset used in the current study. If the effects
of PND beyond Phi-square density are small, the larger
sample of words may be necessary to detect them. The cur-
rent results suggest that the success of PND at predicting
word recognition accuracy is not solely attributable to
the fact that PND is approximating auditory similarity.

Once one accepts that lexical properties (as opposed to
only ‘peripheral’ properties specific to the domain of motor
movements) can be reflected in word durations, the ques-
tion arises whether the direction of the effect – the fact
that higher PND was associated with shorter, not longer,
word durations, is expected or unexpected. If it is indeed
the case that high PND has a facilitating effect on word
form retrieval (Dell & Gordon, 2003; Marian &
Blumenfeld, 2006; Vitevitch, 2002), then proposals claim-
ing that pronunciation variation can reflect the speed of
word form retrieval entail the prediction that the effects
of PND should parallel those of lexical frequency. Frequent
words shorten, and so should words from dense phonolog-
ical neighborhoods. The current results, and the models of
the same corpus of conversational speech reported in Gahl
et al. (2012), are consistent with that prediction.

The idea that phonetic detail reflects early stages of lan-
guage production, as opposed purely being a matter of
motor execution also means that response latencies (in
single-word production) and word durations (in connected
speech) should reveal many of the same factors: Any factor
known to facilitate lexical retrieval might potentially result
in shorter word durations. Therefore, response latencies
and word durations might be expected to correlate posi-
tively, a pattern that has been observed at times (e.g.
Arnold et al., 2012; Mousikou & Rastle, 2015), but is far
from being well established.

We have commented elsewhere (Gahl, 2008) that par-
ticipants’ tendency to pace themselves evenly in tasks
involving the production of word lists and short phrases
may get in the way of studying lexical effects on word
duration. Articulatory and acoustic properties of word-
initial segments are another factor that can complicate
studying the relationship between speech onset latencies
and word durations, as noted in Kawamoto, Liu, Mura,
and Sanchez (2008). For example, Buz and Jaeger (2015)
observed a positive correlation between latencies and
word durations, but also found that effects of latencies
(as a measure of lexical planning) and (frequency-
weighted) phonological neighborhood density in a model
Please cite this article in press as: Gahl, S., & Strand, J. F. Many neighborh
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of word durations were largely independent of one
another, as evidenced by very low fixed-effect correlations
in a mixed-effects regression model of word durations. Buz
and Jaeger (2015) interpret this as evidence for the inde-
pendence of planning and articulation. However, these
findings are complicated by several methodological issues
in the words used in Buz and Jaeger (2015), of which we
mention one here. The low-density target words had a lar-
ger number of initial voiceless stops (7 out of 18) than the
high-density words (2 out of 18). Voiceless stops begin
with a complete closure, i.e. acoustically a period of silence
that is indistinguishable from the latency to begin speak-
ing. The duration of stop closures is variable, but in the
order of 80 ms (Umeda, 1977). Therefore, the recorded ‘‘la-
tencies” for the low-PND words (reported to be 52 ms
longer than for the high-PND words) may be substantially
increased by the initial stop closures and thus inflated rel-
ative to the high-PND words.

The model of word duration also has implications for
the role of perception in pronunciation variation. We have
argued that the word duration data modeled here reflect
word-level information that is independent of the percep-
tual confusability of target words with other words. The
effect of the number of phonological neighbors on target
word duration does not appear to be due to perceptual tar-
get confusability. It may be important to point out that we
restricted our attention to fluent multi-word utterances.
We suspect that words in very short utterances, as well
as words near pauses and disfluencies, all of which were
excluded from our data, may be a better place to look for
effects of perceptual target confusability with specific
alternatives: For example, talkers respond to requests for
clarification and disambiguation (‘‘I said hyPERarticulated,
not hyPOarticulated”) and make up their minds about
tricky word pairs (‘‘Stalagm-, no wait, I mean stalacTITE!”)
– choices, in other words, in which target words are being
contrasted with confusable alternatives.

Caveats and limitations

Several caveats are in order. One limitation of the cur-
rent study concerns the continuous vs. categorical nature
of our outcome variables. Comparing predictors of a con-
tinuous variable (word duration) and a categorical one
(accuracy of word identification) may yield spurious
apparent task-dependent differences (Tooley & Bock,
2014; we thank Florian Jaeger for pointing us to that work).
One continuous measure tapping the recognition process
that one might conceivably use to address this problem
is the auditory lexical decision (ALD) task, i.e. a task in
which participants are asked to make speeded judgments
about whether phoneme strings form real words. However,
ALD tasks are typically conducted in the absence of back-
ground noise (Goldinger, 1996). Presenting stimuli without
masking noise can be an advantage, as it enables making
inferences about lexical processing without degrading the
stimuli. However, Phi-square density values are derived
from measures of phoneme confusion in noise. Applying
Phi-square density to measures of word identification in
the absence of noise is therefore problematic. Indeed,
although Luce and Pisoni (1998) calculated continuous
oods: Phonological and perceptual neighborhood density in lexical
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measures of perceptual similarity for predicting identifica-
tion accuracy, they employed PND when predicting ALD
responses. Therefore, given our use of Phi-square density,
we did not include ALD data in the current study.

A second limitation arises because conversational speech
andwords spoken in citation form (with orwithoutmasking
noise) sound quite different from one another (cf. Johnson,
2004). This difference has consequences for our ability to
assess the role of auditory similarity in conversational
speech production. This is a serious limitation not just of
the current study, but, to our knowledge, prior research in
this area more generally. The problem arises because avail-
able measures of perceptual similarity of words are based
on segment confusability of segments produced in a citation
context (e.g. [aCa]), not segments produced in conversa-
tional speech, in which segments undergo coarticulatory
and other connected-speech processes that inevitably
affects their acoustic and perceptual properties (cf.
Farnetani & Recasens, 1997 for an overview). To our knowl-
edge, sizable data sets on the perceptual confusability of
either segments or words as produced in spontaneous
speech are unavailable. Using tokens from the Buckeye Cor-
pus in a recognition task, perhaps with a continuous mea-
sure of recognition difficulty, strikes us as a useful
direction for future research. Doing sowouldnecessitate dif-
ferent independent measures, however: measures of audi-
tory confusability (like Phi-square density) are based on
confusability of tokens produced in a citation context (e.g.
vowel-target-vowel), which may sound quite different
when produced in conversational speech. Therefore,
Phi-square densitymay be a poor predictor of auditory con-
fusability of words as spoken in conversational speech. This
of course raises the possibility that Phi-square density (and
other available segment-basedmeasure of the auditory con-
fusability of words) is a poor predictor of word duration not
because perceptual confusability doesn’t affect word dura-
tions, but because of thedifference in segment confusability.

An alternative approach might be to investigate to what
extent word durations in conversational speech are pre-
dictable from the confusability of phones in conversational
speech. As a first step in that direction, we compared the
confusability matrices that formed the basis for the
Phi-square density measure (Strand & Sommers, 2011) to
transcriber agreement data the Buckeye corpus (Raymond
et al., 2002) to determine whether the types of feature con-
fusions made were consistent across databases. In both,
the vast majority of confusions were made within manner
and place class (i.e., fricatives confused for other fricatives).
However, the available data from the Buckeye transcribers
contained too few instances of transcriber disagreement to
enable meaningful comparisons with the types of confu-
sions made in the recognition task.

In any case, transcriber agreement cannot replace a full
analysis of the phone-by-phone confusability of phones:
Segments in conversational speech frequently undergo
various (and sometimes extreme) forms of phonetic reduc-
tion (Ernestus, 2014; Keune et al., 2005). In addition, the
task of the transcribers was to listen veridically to the cor-
pus data; the transcribers’ task may favor different results
than the forced-choice-over-noise tasks typically used in
studies of perceptual similarity of segments.
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A reviewer (Florian Jaeger) points out a third potential
limitation, which is that comparisons of the predictive
power of variables across models with different control
variables is problematic. While that is certainly true, sim-
ply using identical predictors in models of different phe-
nomena would create new problems: For example,
inherent segment duration is an important predictor of
word duration – longer segment durations add up to
longer word durations, other things being equal. Our
model of word duration takes this into account, by incor-
porating a baseline duration measure. However, segment
duration does not straightforwardly predict spoken word
recognition (or even segment recognition). Including that
baseline duration measure in a model of spoken word
recognition would therefore not be justified and might
well prevent true predictors of spoken word recognition
from revealing themselves.

Most of the caveats just discussed apply to many previ-
ous studies, as well as to the present work: After all, inter-
est in PND as a lexical variable began with studies of
recognition accuracy in single-word recognition tasks,
which then inspired a huge amount of subsequent work
on speech production, which set aside the questions just
raised. We hope that the present research serves to inspire
research that can address these questions.
Conclusion

Without additional assumptions, PND is a measure, not
a mechanism. PND (the measure) indirectly reflects several
distinct properties of words which are relevant at different
stages of language production and recognition. Taking
effects of PND or any other measure as direct evidence
for a causal role of any particular measure in language pro-
duction and comprehension runs the risk of shoehorning
widely different phenomena into explanations that look
appealingly uniform, but are ultimately lacking.

The interest that effects of word form similarity have
held is due to the fact that such effects are thought to
reflect the organization of the mental lexicon and the
workings of the production and comprehension processes.
Understanding the role of perceptual, articulatory, and
modality-neutral representations and processes in lan-
guage processing will help clarify the specific mechanisms
by which humans perceive and produce spoken language.
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See Tables A.1–A.4.
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Table A.1
Correlation of Fixed Effects in the model of recognition, 201 word types.

Intercept Lexical frequency Syllable token frequencyres PND

Lexical frequency �0.003
Syllable token frequencyres �0.006 0.017
PND �0.009 0.050 �0.128
Phi-square density �0.006 �0.123 �0.150 �0.287

Table A.3
Correlation of Fixed Effects in the model of word duration, 201 word types.

Intercept Baseline BackBigr BackBigr2 ForwBigr Rate,
after

Rate,
before

(Rate
before)2

Lex
Freq

Syll.
freq.

PND

Baseline duration
(log)

0.01

Backward bigram
(log)

0.124 0.055

(Backward bigram,
log)2

�0.224 �0.027 �0.188

Forward bigram (log) 0.094 0.003 �0.028 0.044
Speech rate, after

(log)
0.011 �0.005 0.061 0.038 0.008

Speech rate, before
(log)

0.011 �0.001 �0.016 0.004 0.032 �0.095

(Speech rate, before
(log))2

�0.076 0.005 �0.011 �0.017 0.013 0.008 0.017

Lexical frequency �0.286 0.184 �0.078 0.108 �0.113 �0.026 �0.016 �0.008
Syllable token

frequencyres
�0.038 �0.047 �0.002 0.021 �0.046 �0.012 �0.005 0.006 0.046

PND �0.002 0.085 0.003 0.00 0.017 �0.013 �0.002 0.00 0.092 �0.11
Phi-square density �0.003 0.337 �0.001 �0.001 0.011 0.017 �0.003 0.012 �0.031 �0.169 �0.205

Table A.4
Correlation of Fixed Effects, 487 word types.

Intercept Baseline BackBigr BackBigr2 ForwBigr Rate,
after

Rate,
before

(Rate
before)2

Lex
Freq

Syll.
freq.

PND

Baseline duration
(log)

0.002

Backward bigram
(log)

0.112 0.05

(Backward bigram,
log)2

�0.225 �0.012 �0.223

Forward bigram (log) 0.086 �0.003 �0.004 0.04
Speech rate, after

(log)
0.019 �0.009 0.089 0.016 �0.002

Speech rate, before
(log)

0.011 0.002 �0.021 0.015 0.039 �0.079

(Speech rate, before
(log))2

�0.071 0.007 �0.016 �0.004 0.009 0.022 0.035

Lexical frequency
(log)

�0.249 0.164 �0.078 0.135 �0.109 �0.028 �0.015 �0.008

Syllable token
frequencyres

�0.051 0.023 �0.025 0.013 �0.069 �0.005 �0.003 0.001 0.071

PND �0.008 0.122 �0.007 0.001 0.004 �0.003 0.001 �0.006 0.066 �0.026
Phi-square density (log) �0.003 0.311 0.002 �0.004 0.00 0.007 0.003 0.008 �0.016 �0.162 �0.232

Table A.2
Correlation of Fixed Effects in the model of recognition, 394 word types.

Intercept Lexical frequency Syllable token frequencyres PND

Lexical frequency �0.001
Syllable token frequencyres 0.000 0.023
PND �0.005 �0.118 �0.078
Phi-square density �0.002 0.030 �0.235 �0.239
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