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Abstract Models of spoken word recognition typically make
predictions that are then tested in the laboratory against the
word recognition scores of human subjects (e.g., Luce &
Pisoni Ear and Hearing, 19, 1–36, 1998). Unfortunately, labo-
ratory collection of large sets of word recognition data can be
costly and time-consuming. Due to the numerous advantages of
online research in speed, cost, and participant diversity, some
labs have begun to explore the use of online platforms such as
Amazon’s Mechanical Turk (AMT) to source participation and
collect data (Buhrmester, Kwang, & Gosling Perspectives on
Psychological Science, 6, 3–5, 2011). Many classic findings in
cognitive psychology have been successfully replicated online,
including the Stroop effect, task-switching costs, and Simon
and flanker interference (Crump, McDonnell, & Gureckis
PLoS ONE, 8, e57410, 2013). However, tasks requiring audi-
tory stimulus delivery have not typically made use of AMT. In
the present study, we evaluated the use of AMT for collecting
spoken word identification and auditory lexical decision data.
Although online users were faster and less accurate than partic-
ipants in the lab, the results revealed strong correlations be-
tween the online and laboratory measures for both word iden-
tification accuracy and lexical decision speed. In addition, the
scores obtained in the lab and online were equivalently corre-
lated with factors that have been well established to predict
word recognition, including word frequency and phonological
neighborhood density. We also present and analyze a method
for precise auditory reaction timing that is novel to behavioral
research. Taken together, these findings suggest that AMT can

be a viable alternative to the traditional laboratory setting as a
source of participation for some spoken word recognition
research.
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Reaction time

Collecting data for behavioral research can be time consuming
and expensive for researchers, and tedious for participants. In
order to make the process tractable, researchers are often
forced to limit their trial, participant, or stimulus counts.
Because of these and other disadvantages of laboratory-
based data collection, some researchers have turned to the
Internet as an alternative source of participation. Online ex-
perimentation has many attractive qualities. First, participants
tend to be more diverse than university subject pools and are
willing to participate for less compensation, thanks to their
ability to participate at the time and place of their choosing
(Paolacci, Chandler, & Ipeirotis, 2010). Data from many par-
ticipants can be collected more quickly than in traditional
laboratory settings and during periods when recruiting under-
graduate participants is difficult, such as between terms
(Crump, McDonnell, & Gureckis, 2013; Mason & Suri,
2011). In addition, given that online users never interact with
an experimenter and have no preconceptions about the kinds
of studies being done in a particular research lab, online data
collection may help avoid experimenter bias or effects of par-
ticipant expectation. Finally, because the experiment runs in
each participant’s browser, participation can be highly
parallelized, the instructions are identical for each participant,
and the experiment procedure can be easily shared with other
researchers in the form of source code.

Despite the advantages ofWeb experimentation, two major
factors have historically limited its adoption. First, it was a
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challenge to recruit participants at a sufficient rate to warrant
the study’s presence online. Second, a lack of control over
who participated and the environment in which the tasks were
completed raised concerns over the validity of data collected
online. Not only are researchers absent from the experiment
environment to ensure that the participant is taking the study
seriously, but unlike in a carefully controlled laboratory set-
ting, one cannot guarantee the technological ability of the
participants’ computer systems. The feasibility of multimedia
stimuli or millisecond-resolution timing in online research has
been demonstrated only recently, and concerns about perfor-
mance differences across participant devices linger (see
Reimers & Stewart, 2014, for an in-depth discussion of the
development in each of these areas).

Amazon Mechanical Turk (AMT), an online labor market
for short tasks, has proven to be a worthy solution to the
challenge of participant recruitment (see Buhrmester,
Kwang, & Gosling, 2011; Mason & Suri, 2011, for an intro-
duction to behavioral research using AMT). With very little
extra effort or overhead cost, behavioral researchers have been
able to achieve very high participation rates in considerably
shorter times than would be possible in traditional laboratory
settings. The service includes a built-in feature to prevent du-
plicate participation, and researchers are able to reject (prior to
compensation) responses that appear to be incomplete or in-
compatible with the instructions. Furthermore, Gureckis and
colleagues (McDonnell et al., 2012) have developed an open-
source and ever-improving framework called psiTurk that pro-
vides a common starting point for behavioral psychology ex-
periments on AMT. PsiTurk facilitates behavioral research by
streamlining compensation management, data storage, and
experiment development and deployment.

The second concern, regarding the potentially adverse ef-
fects of participant and environmental variability, has been
addressed for a number of standard behavioral tasks.
Although some studies have demonstrated differences be-
tween the data collected online and in the lab (see Crump
et al., 2013), many phenomena, including the Stroop, flanker,
subliminal-priming, and Posner cueing tasks (Crump et al.,
2013), as well as framing and representativeness heuristics
in decision making (Paolacci et al., 2010), have been replicat-
ed online. Notably, these replications include a wide range of
behavioral tasks, including problem solving and learning, as
well as those that require precise millisecond measurement
and control. These validation studies suggest that the practical
advantages of using AMT do not come at the cost of compro-
mised data.

However, little work to date has evaluated the use of online
data collection for studies that require listening to auditory
stimuli, and even less has examined spoken word recognition
online (but see Cooke, Barker, Garcia Lecumberri, &
Wasilewski, 2011). Conducting auditory research online poses
several challenges in addition to those faced by studies that

employ visual stimuli alone. First, althoughWeb technologies
provide tools to effectively standardize the presentation of
simple visual stimuli (such as individual words or images),
researchers have significantly less control over the quality
and amplitude of audio stimuli, and, historically, the precision
of the onset time of the stimulus. When conducting research
on spoken word recognition in the lab, researchers carefully
determine a signal-to-noise ratio and overall amplitude at
which to present stimuli in order to avoid floor and ceiling
effects. Stimuli are typically presented to participants via high-
quality headphones or speakers in a sound-attenuating cham-
ber with no visual distractions. On the other hand, not only
will audio hardware (i.e., speakers or headphones) vary
among online users, but AMT users also have control over
the volume at which their computers play sounds, making it
impossible to ensure that auditory stimuli are presented at a
consistent amplitude across participants. In addition, re-
searchers have no control over the auditory environment in
which AMT users complete the task. It is therefore likely that
some participants will be listening in settings that include
background noise at levels above what would be acceptable
in the laboratory.

Despite these concerns, data that have been collected using
auditory stimuli online thus far have demonstrated some key
similarities with data collected in the lab. Cooke et al. (2011)
found that participants in the lab and participants online are
similarly affected by changes in signal-to-noise ratio and the
type of masker noise (i.e., multitalker babble, speech shaped
noise, etc.). Participants in the lab and on AMT also showed
similarities in rating the intelligibility of different speech
types, including infant-directed speech, computer-directed
speech, and other types (Mayo, Aubanel, & Cooke, 2012).
However, differences between data sets obtained in the lab
and online have also been identified. For example, online
users show some discrepancies in the patterns of speech
sounds that they confuse (Cooke, Barker, Lecumberri, &
Wasilewski, 2013), and word recognition scores are consis-
tently lower online than in the lab for both natural (Cooke
et al., 2013) and synthetic (Wolters, Isaac, & Renals, 2010)
speech. Therefore, additional research is needed to evaluate
the conditions under which spoken word recognition data col-
lected online are comparable to lab-collected data.

Online auditory experimentation is further complicated
when the experimental task involves measurements of partic-
ipants’ reaction times (RTs). Because of the computational
load that decoding, buffering, and playing audio requires,
modern computer architecture offloads the task to a separate
hardware component, the soundcard. This device has its own
internal clock and, because Web technology in general has
very limited programmatic access to computer hardware, it
has traditionally been difficult either to obtain the time that
an audio clip began or to align the beginning of an audio clip
with a specific time set by the main processor. It is reasonable,
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therefore, to doubt that RTs in response to auditory stimuli
collected from an online platform such as AMT could be ac-
curate enough to expose subtle linguistic effects. For the pres-
ent study, we took a multipronged approach to addressing this
concern by using a timing method provided by recent devel-
opments in Web technology.

In Experiment 1, we conducted two standard spoken word
recognition tasks both in the laboratory and online, and then
compared the results from the two settings. In addition, we
evaluated how these word recognition scores correlated with
lexical variables that have been established as consistent pre-
dictors of recognition accuracy. In Experiment 2, we verified
the performance of the timing method used in Experiment 1
directly, by comparing it to a naive timing solution.

Experiment 1

The most commonly used tasks in research on spoken word
recognition are word identification in noise (Pisoni, 1996) and
auditory lexical decision (Goldinger, 1996). Word identifica-
tion in noise (ID) tasks typically involve presenting partici-
pants with individual words in a background of masking
noise, such as white noise or multitalker babble, and asking
them to try to identify the word. In an auditory lexical decision
(ALD) task, participants are presented with words and
phonotactically legal nonwords and are asked to determine
as quickly and accurately as possible whether the stimulus that
they heard formed a real word, and to respond by pressing a
button.

From a theoretical standpoint, much research on spoken
word recognition has sought to describe the process by which
a stimulus word is disambiguated from all other words in the
mental lexicon (see Dahan & Magnuson, 2006, and Weber &
Scharenborg, 2012, for reviews). Although models of word
recognition differ in implementation, they do include mecha-
nisms to explain why some words are identified more quickly
and accurately than others (cf. Luce, Goldinger, Auer, &
Vitevitch, 2000; Luce & Pisoni, 1998; McClelland, Elman,
&Diego, 1986). Themost well-established factor that predicts
word identification accuracy is the frequency with which the
word occurs in language: Common words are identified more
quickly and accurately than rare words (Brysbaert & New,
2009; Savin, 1963). A second factor that robustly predicts
word recognition scores is the perceptual similarity of the
stimulus word to other words in the mental lexicon. Models
of recognition assume that stimulus input in the form of the
acoustic signal activates multiple lexical candidates (often
called Bneighbors^) in memory, and that these candidates then
compete with one another for recognition. Therefore, due to
this lexical competition, words with many neighbors are iden-
tified more slowly and less accurately than words that are
more distinct (Luce & Pisoni, 1998; Vitevitch & Luce,

1998). In addition, frequency also appears to modulate the
effects of lexical competition; words that tend to have more
high-frequency neighbors are recognized more slowly and
less accurately than words with low-frequency neighbors
(Luce & Pisoni, 1998). Both the ID and ALD tasks are as-
sumed to be influenced by the organization of the mental
lexicon and are sensitive to word frequency and lexical com-
petition effects.

The goals of Experiment 1 were twofold. First, we sought
to evaluate whether ID and ALD data collected using AMT
are comparable to data collected in the laboratory. Second, we
assessed whether data collected using AMT are affected by
lexical variables at rates comparable to those of data collected
in the laboratory.

Method

Participants

Laboratory The participants were native English speakers
(N = 53 in the ID task, N = 51 in the ALD task) with self-
reported normal hearing and normal or corrected-to-normal
vision, who were recruited from the Carleton College un-
dergraduate student body. Testing took approximately
30 min, and participants were awarded $5 for their time.
Carleton College’s Institutional Review Board approved
the research procedures.

AMT The experiment was programmed in JavaScript using
the psiTurk experiment platform (McDonnell et al., 2012).
Online data were collected between the dates of July 30 and
August 6, 2014. Workers on the AMT residing in the United
States were presented with an advertisement for the study that
listed various personal, environmental, and technical require-
ments: that they have normal hearing, be in a quiet environ-
ment, and use a modern Web browser. All workers self-
reported being native English speakers or reported speaking
English most of the time. Testing took approximately 30 min
and participants were awarded $2.50 for their time. Different
groups of participants completed the ALD and ID tasks (n =
100 for each) and were randomly assigned by psiTurk’s con-
dition balancing algorithm. An additional 76 (ID: n = 34;
ALD: n = 42) participants began the study but failed to com-
plete it for unknown reasons, rendering a completion rate of
72 %.1 Carleton College’s Institutional Review Board ap-
proved the research procedures.

1 The data on completion rates for psychological studies on
AMTare not widely available, but Crump et al. (2013) report-
ed a completion rate of 81 %. Future work should further
explore the factors that influence attrition in online studies.
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Stimuli

The stimuli for the ID and ALD tasks included 400 conso-
nant–vowel–consonant (CVC) words, selected to ensure a
range of values of lexical variables, including frequency and
lexical neighborhood size. The ALD task also included 400
phonotactically legal CVC nonwords (e.g., Bdak,^ Blin^).
Speech stimuli were recorded at 16 bits, 44100 Hz using a
Shure KSM-32 microphone with a pop filter, by a female
speaker with a standard Midwestern accent, and were equal-
ized on total root mean squared intensity (RMS) using Adobe
Audition, version 5.0.2. In the ID task, speech stimuli were
presented in a background of six-talker babble (signal-to-noise
ratio = 0). The ALD stimuli were presented without back-
ground noise. In the laboratory, both the ALD and ID stimuli
were presented at approximately 65 dB through Sennheiser
HD-280 PRO headphones.

Procedure

In both the ID and ALD tasks, participants in the laboratory
were seated in a quiet room a comfortable distance from an
iMac computer running the Cedrus Superlab 5.0 stimulus pre-
sentation software. In the ID task, the lab and AMT partici-
pants were presented with isolated auditory stimuli in a ran-
domized order. They then typed their response into a white
text box with large, black font displayed in the middle of a
gray screen. Participants were encouraged to guess when they
were unsure. After entering each response, a 1-s intertrial in-
terval elapsed before the next word was presented. A short
practice session consisting of five additional CVC words pre-
ceded the experiment. Participants completed the full task in a
single block without breaks.

In the ALD task, the lab and AMT participants were pre-
sented with a blank gray screen and heard the stimuli in a
randomized order. Lab participants responded with a Cedrus
Response Pad (RB730), whereas online participants used the
Tab and Backslash keys of their keyboards to indicate
Bnonword^ and Bword,^ respectively. The subsequent trial
began after a 250-ms postresponse interstimulus interval.
The on-screen display was identical in the lab and online,
except for the presence of a keyboard legend in the AMT
version. A short practice session consisting of two CVCwords
and two CVC nonwords preceded the experiment.

The procedures in the lab and online were designed to be as
similar as possible. However, some extra precautions were
included in the online version, as an attempt to mitigate dis-
traction and verify technical sufficiency. The AMT users were
first presented with an audio CAPTCHA via Google’s
reCAPTCHA service (Google, 2014) that required them to
transcribe several numbers in a challenging listening situation.
This was done for multiple reasons: to dissuade users from
using computer scripts (Bbots^) to take the study, to verify

sufficient hearing ability, and to ensure that the participant’s
audio equipment was functioning properly and was set at an
amplitude appropriate for the task.

Participants were also required to put their browser in full-
screen mode in order to mitigate distraction from other soft-
ware. If a participant exited full-screen mode during the ex-
periment, the study was paused and input was blocked until
the participant reentered full-screen mode. The participants
who paused the experiment in this way were allowed to con-
tinue, and their data were treated identically in the subsequent
analysis to the data from all other participants; we do not
believe this allowance affected the results in a systematic
way, because the mean and standard deviations for the time
required to complete the test trials of the experiment were very
similar for data in the lab (ID,M = 18 min, SD = 6 min; ALD,
M = 19 min, SD = 4 min) and on AMT (ID,M = 20 min, SD =
7 min; ALD, M = 19 min, SD = 6 min).

In both the ID and ALD tasks, the audio was preloaded,
buffered, and presented using the Web Audio API (Adenot &
Wilson, 2015). The total RMS amplitudes of the audio stimuli
were adjusted to match the level of the samples used by the
reCAPTCHA service. Online RTs were collected via the
currentTime property of the AudioContext interface (see
Exp. 2 for implementation details). Source code for the
AMT experiment is available at http://go.carleton.edu/
StrandLab.

Results and discussion

Word identification

Prior to compensation, the data of the AMT participants who
responded with less than 10 % accuracy on the ID task were
manually checked for responses incompatible with the task
instructions (e.g., empty strings or nonsense words). This re-
sulted in the rejection of two online participants’ work. Both
the in-lab and online responses were then were hand-checked
for obvious typographical errors. Entries were corrected if
they included extraneous punctuation (e.g., Bfit/^), were pho-
nologically identical to the target (e.g., Bsighed^ and Bside^),
and when the entry did not represent a real word but differed
from the target by one letter (e.g., Bcalfr^ to Bcalf^). These
corrections represented approximately 1 % of the responses in
both the lab data and the AMT data. Word identification ac-
curacy was then calculated for each of the target words in both
the lab data and the AMT data.

Words were identified significantly more accurately in the
lab than on AMT, t(399) = 21.81, p < .001, Cohen’s d = 0.54,
with lab users scoring an average of 14 % higher than AMT
users (see Fig. 1).

Although overall accuracy was higher in the lab than on
AMT, there was a strong correlation between the word iden-
tification accuracy scores obtained in the lab and online, r =
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.87, p < .001 (see Fig. 2), indicating that words that were more
difficult for participants to identify in the lab were also more
difficult for online users. This correlation is similar in magni-
tude to the split-half reliabilities of the ID task both in the lab
(r = .90, p < .01) and on AMT (r = .94, p < .001), indicating
that some of the deviation between the scores in the lab and
online was simply a function of noise in the replication pro-
cess, rather than a systematic difference between in-lab and
online data collection.

Auditory lexical decision task

Similarly to the ID task, the data of AMT participants who
responded with less than 10% accuracy on the ALD task were
manually screened for responses incompatible with the task
instructions (e.g., answering Bnonword^ for every stimulus).
No participants responded in an obviously incompatible way.
In-lab and online participants’ individual ALD responses that
were longer than 2,000 ms were excluded. These made up
fewer than 3 % of all ALD responses. The average latencies
for all correct responses to the word stimuli were then calcu-
lated for each stimulus word. Ten words had accuracy rates
less than 40 % (three standard deviations below the mean) in
the lab data and/or the AMT data. Given that these stimuli
would include a very small number of correct responses from
which to draw latency data, the ALD analysis was conducted
on the remaining 390 words. To account for the influence of

word duration onRTs, latencies weremeasured from the offset
of the stimulus word. Studies that employ longer-length stim-
uli (which may be identified prior to offset) should consider
measuring the latency from word onset and entering the stim-
ulus length as a covariate. Given the short length of the mate-
rials in the present study, the major findings did not differ if
the latency was measured from word onset rather than offset.
As compared to the data collected in the laboratory, the re-
sponses from AMT were 63 ms faster, t(389) = 26.61, p <
.001, Cohen’s d = 0.75, and 5 % less accurate, t(389) =
17.87, p < .001, Cohen’s d = 0.54 (see Fig. 3).

In parallel to the findings of the ID task, there was a strong
correlation between the ALD latency data collected in the lab
and onAMT, r = .86, p < .001, and between the ALD accuracy
data collected in the lab and on AMT, r = .82, p < .001; see
Fig. 4. Again, these results were similar to the split-half reli-
abilities of the lab data (RT data, r = .84, p < .001; accuracy
data, r = .85, p < .001) and the AMT data (RT data, r = .83, p <
.001; accuracy data, r = .89, p < .001).

Links with lexical variables

In addition to evaluating the reliability of the measures col-
lected online and in the laboratory, in the present study we also
sought to assess whether previously used lexical variables
explained similar amounts of variance in the data collected
from the lab and online. These variables were selected on
the basis of their well-established role in predicting word iden-
tification accuracy and latency in other studies, and they in-
cluded word frequency (Brysbaert & New, 2009), age of ac-
quisition (Kuperman, Stadthagen-Gonzalez, & Brysbaert,
2012), familiarity (Connine, Mullennix, Shernoff, & Yelen,
1990), neighborhood size (Luce & Pisoni, 1998), neighbor-
hood frequency (Luce & Pisoni, 1998), phi-square density
(Strand, 2014), and phonotactic probability (Vitevitch, Luce,
Pisoni, & Auer, 1999).

Word frequency values were obtained from the data set of
Brysbaert and New (2009), which calculated frequency counts
from spoken television and film subtitles. Age-of-acquisition
data were obtained from an existing data set (Kuperman et al.,
2012) that assessed the ages at which individuals first learn
words. Words that are learned younger tend to be recognized
more easily than those that are learned later (Turner, Valentine,
& Ellis, 1998). Familiarity values were obtained from the
Hoosier Mental Lexicon (Sommers, 2002); familiarity facili-
tates word recognition (Connine et al., 1990).

Lexical competition has most commonly been quantified
by defining Bneighbors^ as words that may be formed by a
single, position-specific phoneme addition, deletion, or sub-
stitution (see Luce, Pisoni, & Goldinger, 1990). Values for the
number of neighbors were obtained from an existing database
(Balota et al., 2007). We also calculated the average frequency
(Brysbaert & New, 2009) of a word’s neighborhood, given

Fig. 1 Identification accuracy. Error bars represent 95 % confidence
intervals

Fig. 2 Identification accuracy for each stimulus word, in the lab and on
Amazon Mechanical Turk (AMT). The line represents x = y
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prior work demonstrating that words with higher-frequency
neighbors tend to be identified less accurately than those with
lower-frequency neighbors (Luce & Pisoni, 1998). Lexical
competition has also been quantified on a continuous scale,
by assessing the perceptual similarity of a target word to every
other word in the lexicon, using the probabilities that the two
words’ segments will be confused on a forced choice phoneme
identification task (Luce & Pisoni, 1998; Strand, 2014). One
such continuous measure of lexical competition, phi-square
density, quantifies the amount of lexical competition for each
stimulus word by evaluating the expected confusability of
each word with all other words in a lexicon (see Strand &
Sommers, 2011, and Strand, 2014, for methodological and
computational details). We adopted phi-square density as an
additional measure of lexical competition, and values were
obtained from the Phi-lex database (Strand, 2014). Although
categorical (neighbor-based) and continuous (e.g., phi-square
density) measures of lexical competition are correlated with
one another and account for variance in word recognition
accuracy, phi-square density accounts for significantly more
unique variance in spoken word recognition accuracy than do
neighbor-based approaches (Strand & Sommers, 2011;
Strand, 2014). Both measures are included here to more rig-
orously evaluate the similarity of lab data and AMT data by
using multiple measures of lexical competition. Finally, we
also obtained measures of phonotactic probability, a metric
of the frequency of occurrence of a given words’ segments
(Vitevitch & Luce, 2004). Words with high-probability seg-
ments tend to be recognized more quickly than those with
low-probability segments (Vitevitch et al., 1999).

The influences of the seven lexical variables were evaluat-
ed for both the lab and AMT measures of ID accuracy and
ALD latency.2 The magnitudes of the correlations of the lex-
ical variables with the lab and AMTmeasures are quite similar
(see Tables 1 and 2). In line with prior research, higher-
frequency words were identified more quickly and accurately
than lower-frequency words. Age of acquisition predicted
word identification accuracy and ALD latency in both the

lab and on AMT, with facilitation for words learned younger.
The correlation with word familiarity only reached signifi-
cance for the AMT ID data. Words with more lexical compe-
tition (as measured by number of neighbors or phi-square
density) were identified more slowly and less accurately.
Words with neighbors that tend to be high-frequency were
recognized moderately more accurately both in the lab and
on AMT, but did not influence RTs. This finding is somewhat
surprising, because neighbor frequency tends to be detrimen-
tal to identification accuracy (Luce & Pisoni, 1998). However,
when controlling for target word frequency, the relationship
between neighbor frequency and accuracy disappears (ps >
.31 for both comparisons), suggesting that the correlation be-
tween neighbor frequency and identification accuracy is due
to collinearity between target word frequency and neighbor
frequency. Phonotactic probability was significantly correlat-
ed with ALD latencies in both the lab and AMT data, although
not in the ID data. Fisher r-to-z transformations revealed no
significant differences in the magnitudes of the correlations
between lab- and AMT-derived measures and the lexical
variables.

Given the degree of multicollinearity between multiple lex-
ical variables (e.g., frequency and age of acquisition or phi-
square density and number of neighbors), we also conducted a
series of multiple regressions to evaluate the unique variance
explained by each predictor variable in the lab and the AMT
data. The seven measures of lexical competition were entered
in a stepwise multiple regression, which followed a forward
selection approach but also evaluated whether the removal of
a predictor improved the model at each step (Field, 2009). No
previously selected variables were removed in any of our
analyses, so the results were identical to a forward-selection
approach (see Tables 3 and 4). Given the finding that lexical
competition effects may be moderated by frequency (Goh,
Suárez, Yap, & Tan, 2009; Luce & Pisoni, 1998), we also
included a term for the Neighborhood Size × Frequency inter-
action, but this failed to account for significant unique vari-
ance in either the lab data or the AMT data.

A parallel analysis was conducted for the ALD data, using
the same seven lexical variables. Only three predicted signif-
icant unique variance in ALD latencies: frequency, phi-square

Fig. 3 Average latencies and accuracies for words in the auditory lexical decision (ALD) task in the lab and on AmazonMechanical Turk (AMT). Error
bars represent 95 % confidence intervals

2 Due to the high values and low variability of ALD accuracy,
these data were not examined further.
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density, and neighborhood size (see Table 4). The remaining
four variables and the Neighborhood Size × Frequency inter-
action measure failed to account for significant variance.

As in the ID data, the ALD regression analyses demonstrated
strong consistencies between the data collected in the lab and
online. However, these comparisons were being made on differ-
ent sample sizes, since the AMT sample had nearly double the
participants that the lab sample did. To evaluate whether these
different sample sizes influenced our results, we also completed
the regressions above using a random sample of the AMT par-
ticipants to match the size of the lab sample. The major out-
comes did not change, indicating that the larger size of the
AMT sample was not responsible for the similarity with the
lab data. However, future studies that are concerned about the
possibility of greater variability in the AMTsample should eval-
uate whether larger samples are necessary for sufficient power.

An additional analysis that researchers have used in studies
on spoken word recognition is to compare the accuracies and
latencies for words that that vary in lexical Bdifficulty^
(Kaiser, 2003; Luce & Pisoni, 1998; Sommers, 1996;
Sommers & Danielson, 1999). BEasy^ words are those that
are high in frequency and have relatively few neighbors that
tend to be low-frequency. BHard^ words are low-frequency
words with many high-frequency neighbors. In the present
data set, easy and hard words were selected as those that were
above or below the median value on each characteristic,
resulting in 60 easy words and 52 hard words. As compared
to hard words, the easy words were higher in frequency, t(110)
= 12.66, p < .001, Cohen’s d = 2.43, had fewer neighbors,
t(110) = −15.30, p < .001, Cohen’s d = 2.90, and had lower-
frequency neighbors, t(110) = −4.44, p < .001, Cohen’s d =
0.88. In the ID task, words were identified more accurately in

the lab than online, F(110, 1) = 117.66,MSE = .009, p < .001,
ηp

2 = .52, and easywords were identifiedmore accurately than
hard words, F(110,1) = 18.95,MSE = .12, p < .001, ηp

2 = .15.
Critically, the Difficulty × Data Collection Method interaction
was not significant, F(1, 110) = 0.30,MSE = .009, p = .59, ηp

2

= .003, indicating that the influence of lexical difficulty was
consistent across the AMT and lab data; see Fig. 5.

A parallel analysis in theALDdata revealed the same pattern.
Words were identified more quickly on AMT than in the lab,
F(1, 110) = 162.93, MSE = 1,298.53, p < .001, ηp

2 = .60, easy
words were identified more quickly than hard words, F(1, 110)
= 39.41,MSE = 1,219.15, p < .001, ηp

2 = .26, and there was no
interaction between lexical difficulty and data collection meth-
od, F(1, 110) = 1.89, MSE = 1,298.53, p = .17, ηp

2 = .02.

Browser and operating system statistics

Participant characteristics such as age or technological ability
may influence the hardware and software that they use.
Therefore, it is possible that participants who use particular
browsers or operating systems may differ systematically in
performance. To assess this, we evaluated whether browser
and operating system choices influenced the performance on
all tasks. The majority of the AMT participants usedWindows
computers to complete the task (84 %), with 15 % using
MacOS and 1 % using Linux. Chrome was the most common
Web browser (81 %), with 17 % using Firefox and 2 % using
Safari. We observed no systematic differences among the op-
erating system or browser types. That is, ID accuracies, ALD
accuracies, and ALD latencies were equivalent across operat-
ing systems and browser types (ps > .17 for all comparisons).

Table 1 Correlations between lexical variables and identification-in-noise (ID) measures

Frequency age of
acquisition

Familiarity Number of
Neighbors

Neighbor
Frequency

Phi-Square
Density

Phonotactic
Probability

Lab ID ACC .30** –.21** .05 –.11* .13** –.27** –.01

AMT ID ACC .34** –.21** .12* –.11* .09x –.30** –.04

AoA, age of acquisition; ACC, accuracy; AMT, Amazon Mechanical Turk. x p = .08, * p < .05, ** p < .01

Fig. 4 Auditory lexical decision (ALD) latency and accuracy for each stimulus word, in the lab and on Amazon Mechanical Turk (AMT). The lines
represent x = y
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Performance across the tasks

Given the length of the study and the relatively tedious
nature of the task, participant fatigue, and therefore im-
paired performance later in the task, might be a concern,
particularly for AMT, on which users might be less moti-
vated. To assess this, we compared the accuracies and la-
tencies on the first half of the tasks to those on the second
half. Contrary to the predictions of a fatigue account, per-
formance was higher on the second half of the ID task both
in the lab [6 % increase; t(398) = 8.56, p < .001] and on
AMT [3 % increase; t(398) = 5.90, p < .001]. Latencies in
the ALD task were faster in the second half than the first
half both in the lab [16-ms decrease; t(798) = 6.54, p <
.001] and on AMT [39-ms decrease; t(798) = 17.90, p <
.001]. Given the well-established effect of talker familiar-
ity on word recognition (Nygaard & Pisoni, 1998), this
may be a function of learning the speaking style of the
talker, along with gaining familiarity with the task. Given
that the stimuli were presented in a random order to each
participant, these increases in performance over the course
of the task could not systematically influence evaluating
the links with lexical variables. Future studies whose re-
sults may be influenced by these types of changes in per-
formance across time should consider counterbalancing or

randomizing the order in which stimuli or conditions are
presented.

Taken together, these results demonstrate robust consisten-
cies between data collected in the laboratory and on AMT.
Specifically, we found strong correlations between word iden-
tification accuracies and latencies, and similar correlations
with lexical variables. Although the relative performance
was consistent across the settings, the data revealed significant
differences in the magnitudes of accuracy and speed in the lab
and online measures. These findings are consistent with prior
research showing that AMT users are less accurate overall
than lab users (Cooke et al., 2011), but we are the first to show
correlations between individual stimulus items in laboratory
and AMT data and to demonstrate relationships with lexical
variables.

Although the present data cannot explain why AMT users
were faster and less accurate than lab users, it is possible that
environmental factors and task demands influenced these dif-
ferences. For instance, the disparity in accuracy may be par-
tially attributable to the overall poorer quality of the listening
experience of AMT users. Assuming that the average AMT
user was completing the task in a listening context inferior that
of a lab user (i.e., noisy background, lower-quality head-
phones), the overall reductions in accuracy might simply be
a function of a more difficult signal-to-noise ratio. The latency
differences might be attributable to a contrast in priorities:
Undergraduates participating in lab studies may prioritize ac-
curacy over speed, whereas AMT users are likely to be com-
pleting the task as quickly as possible in order to move on to
the next task and optimize monetary gain. This increase in
speed may have come at the cost of lower accuracies in the
ALD and ID tasks.3

Experiment 2

Many behavioral tasks (including the ALD task used in Exp.
1) rely on the ability of the researcher to precisely time partic-
ipants’ responses. This is straightforward in the lab, where it is

3 As one reviewer pointed out, researchers concerned about
this speed–accuracy trade-off may motivate AMT users to
prioritize accuracy by imposing an accuracy criterion that par-
ticipants must reach prior to compensation.

Table 2 Correlations between lexical variables and auditory lexical decision (ALD) measures

Frequency AoA Familiarity Number of Neighbors Neighbor Frequency Phi-Square Density Phonotactic Probability

Lab ALD latency –.38** .26** –.02 .15** .02 .18** .14**

AMTALD latency –.35** .24** –.04 .18** –.03 .20** .16**

AoA, age of acquisition; AMT, Amazon Mechanical Turk. * p < .05, ** p < .01

Table 3 Results of a regression predicting word recognition accuracy
in the lab and on Amazon Mechanical Turk (AMT) from the lexical
variables

Lab AMT

Beta R2 change Beta R2 change

Frequency .25 .09** .31 .12**

Phi-square density –.39 .10** –.42 .13**

Age of acquisition –.14 .01* –.13 .01*

Phonotactic probability .16 .01* .14 .01*

Number of neighbors –.12 .01* –.10 .01*

Average neighbor frequency .12 .01* .07 .00

Familiarity .05 .00 .13 .01*

Total R2 .24 .29

* p < .05, ** p < .01. Familiarity and average neighbor frequency were not
selected as significant predictors in the lab and the AMT data, respective-
ly. Betas reflect values at the final step.
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common practice to ask participants to respond via devices
such as voice keys or button boxes that have fine temporal
resolutions with known tolerances. Online, however, differ-
ences in hardware performance, along with varying and un-
known amounts of presentation and response lag, may intro-
duce confounding noise into the measurement.

Rather than being able to choose well-suited stimulus pre-
sentation and input systems for their experiment, researchers
conducting an online study may only influence the accuracy
of their timing measurements by carefully programming their
experiments on a software platform chosen from a small set of
commonly available options (AMT prohibits asking partici-
pants to download specialized software to complete a task).
Although a variety of such platforms are in use (e.g., Simcox
& Fiez, 2014), JavaScript, the Web’s native programming
language, is becoming increasingly attractive in comparison
to plugin alternatives such as Flash or Java. As was noted by
Reimers and Stewart (2014), JavaScript is nonproprietary,
supported by all modern browsers, and requires no extra soft-
ware to function (see Crump et al., 2013, for examples of
experiments that have used JavaScript on AMT).
Meanwhile, the US Department of Homeland Security has
recommended that users uninstall Java 7 from their machines
due to serious security concerns discovered in 2013, and
Adobe has ceased developing Flash for mobile devices.

Despite its appeal, JavaScript is not without its limitations.
Because it is a scripting language native to the Web browser
environment, the experiment code is transmitted to the user
uncompiled. This means that a skilled participant may be able
to manipulate the experiment to skip trials, trigger rewards, or
create a bot to take the experiment multiple times. Fortunately,
AMT makes it possible to programmatically (or manually)
check for manipulation prior to compensation, mitigating this
risk. Furthermore, any time advantage that would result from
writing a script to automate participation is made irrelevant by
the ease with which a researcher can prevent duplicate partic-
ipation. Unless the experiment is hours long, a participant has
little incentive to invest the time required to convincingly
provide false data instead of simply participating in the study.

Another difficulty associated with JavaScript is that, be-
cause it is a cross-platform scripting language that runs inside
a browser, it has very limited programmatic access to comput-
er hardware. As a result, many processing steps are needed to
present stimuli and receive user input, making it very difficult
to accurately measure RTs. Prior online behavioral research
(e.g., Reimers & Stewart, 2014) has used a time-polling sub-
routine—the getTime() method of the Date object—that has
millisecond resolution but not necessarily millisecond preci-
sion,4 especially on Windows PCs. Although previous work
has demonstrated that this subroutine (here called the Bdate
method^) is accurate enough to support the replication of
some fairly subtle effects, including RT differences between
compatible and incompatible trials in the flanker task (Crump
et al., 2013), the technique has not yet been used in conjunc-
tion with auditory stimuli.

This is perhaps with good reason: The Web development
community has historically struggled (Wilson, 2013) with the
synchronization of auditory events with other forms of inter-
action, because of the complexities associated with playing
audio on the Web that we mentioned in the introduction. For
example, pseudocode for a naive implementation of RT mea-
surement for the ALD task in Experiment 1 might look as
follows:

1. Wait 250 ms as an ISI
2. Start playing audio stimulus
3. Record the stimulusStart time with the date method
4. Wait for user response
5. Record the responseTime time with the date method
6. reactionTime = responseTime – stimulusStart

Unfortunately, there is no way to guarantee that the stimu-
lus start time measured by the date method is aligned with the
actual onset of the auditory stimulus, because an unknown
amount of time lag separates when an audio component is
asked to play and when it actually begins to do so (see, e.g.,
Psychology Software Tools, 2014; Smus, 2012).

However, a widely supported5 high-level sound interface
for JavaScript now exists, the Web Audio API, that can ad-
dress this problem (Adenot & Wilson, 2015). Among other
features, the Web Audio API includes access to the
soundcard’s clock via the currentTime property of the

4 Here Bresolution^ refers to the number of digits in the value
returned by the function, whereas Bprecision^ is the measure-
ment’s tolerance (guaranteed ± neighborhood) relative to the
true value. In other words, not all digits provided by the
getTime() method are necessarily meaningful.
5 Current versions of Google Chrome, Mozilla Firefox, Safari,
and Opera all support the Web Audio API, and support in
Internet Explorer is planned. See http://caniuse.com for
detailed support information.

Table 4 Results of a regression predicting auditory lexical decision
latencies in the lab and on Amazon Mechanical Turk (AMT) from the
lexical variables

Lab AMT

Beta R2 change Beta R2 change

Frequency –.43 .15** –.41 .12**

Phi-square density .21 .06** .22 .07**

Number of neighbors .14 .02** .17 .03**

Total R2 .23 .22

* p < .05, ** p < .01
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AudioContext object (referred to here as the Baudio method^),
as well as dedicated audio scheduling. This feature allows the
programmer to plan sounds at specific points in the
soundcard’s time course. Pseudocode for the actual ALD im-
plementation used in Experiment 1 is as follows:

1. Record the currentTime time with the audio method
2. stimulusStart = currentTime + 250 ms (the ISI)
3. Schedule the next audio stimulus to begin playing at

stimulusStart
4. Wait for user response
5. Record the responseTime time with the audio method
6. reactionTime = responseTime – stimulusStart

By implementing measurement in this fashion, it may be
possible to gain more accurate RT measurements. It was the
purpose of this experiment to compare the accuracy of mea-
surements provided by the audio method to those provided by
the date method.

Method

In order to compare the two timing methods, we conducted
date- and audio-method versions of the ALD task from
Experiment 1with a closed-loop response system. This enabled
us to precisely record the actual RTs and compare them to those
measured by the JavaScript implementations. The codebase of
the ALD task was kept as close as possible to that of the
Experiment 1, so as to ensure that the simulation took place
in a realistic computational environment, but some simplifying
alterations were necessary in order to guarantee accurate con-
trol measurements. The stimuli were replaced with a single,
650-ms-long (approximately the mean length of our stimuli),
440-Hz pure tone to provide an unambiguous stimulus start
time. Standard ALD responses (two keys, one for Bword^
and the other for Bnonword^) were simplified to a single key.

Two computers were used in this experiment: a Btest^ ma-
chine that ran the modified experiment, and a Bcontrol^ ma-
chine that recorded the time course of the stimuli and re-
sponses. Responses were automated by an external Arduino

device attached to a double-position, double-throw relay. One
of the relay’s poles closed the contacts of a key on the test
computer’s keyboard. The other closed a circuit that generated
a small spike in an audio channel of the control computer’s
line-in soundcard input. The other channel of the control com-
puter’s line-in was attached to the headphone jack of the test
computer. Because the dual-acting relay simulated a partici-
pant’s response and generated a small waveform at the same
time, by recording the control computer’s line-in stereo input,
we obtained a time-locked record of stimulus presentation and
Bparticipant^ responses. The response device provided RTs
distributed approximately uniformly between 500 and 1,
000 ms. The control computer’s line-in input was recorded
with Audacity.

Due to the vast number of different computer models cur-
rently being used to access the Internet, it is impossible to
investigate timing behavior on every device. Instead, many
chronometry studies (Reimers & Stewart, 2014; Simcox &
Fiez, 2014) approximate this diversity by gathering data from
a set of typical hardware configurations, operating systems,
and Web browsers. However, because the present study was
concerned with the relative difference in performance between
the two timing functions of the same software language, we
only considered a single hardware and software setup: a
Lenovo X220 laptop running Google Chrome on 64-bit
Windows 8 with 4 GB of RAM and an Intel Core i5-
2520 M CPU clocked at 2.50 GHz.

This machine was chosen because it is in the range that
AMT participants might be expected to use,6 but is likely to
render differences between the timing methods that are small-
er than will typically be observed. An older computer, a ded-
icated and/or higher-quality soundcard, or aWeb browser with
a slower JavaScript engine would likely yield the same or

6 Although up-to-date operating system statistics for AMT
users are generally difficult to find, a first approximation is
provided by Experiment 1, in which 84 % of the participants
usedWindows. This is consistent with the findings of Reimers
and Stewart (2014), who reported that 85 %–90 % of the
participants in online experiments (including AMT and other
platforms) use Windows.

Fig. 5 Influences of lexical difficulty on identification-in-noise (ID) accuracy and Auditory lexical decision (ALD) latency
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starker differences between the two timing methods.
Furthermore, in a timing study concerned with visual stimuli,
Reimers and Stewart (2014) found Bno obvious systematic
effect^ of browser type on RT measurements, so browser
choice may be largely irrelevant. In summary, any differences
between the two methods revealed here would represent a
conservative estimate of the difference between the two
methods across platforms.

The experiment was runwith each timingmethod twice: first
while the processor was under low load (approximately 5 %
processor use), and then while it was under high load (approx-
imately 65 % processor use). The high-load condition was in-
cluded to simulate a participant whowas running other software
during the experiment. In keeping with Simcox and Fiez
(2014), Prime95 was used to generate processor load. A total
of 250 trials were conducted in each of the four conditions (low
and high processor load for both the audio and date methods).

Results and discussion

For each trial in both timing conditions and at both load levels,
the time between the onset of the stimulus and the response was
manually measured using Audacity. For each trial, the RTs mea-
sured by the control computer (i.e., the actual RTs) were
subtracted from those measured by the test computer (the RTs
measured by the experimental code), to obtain a measurement
error (see Table 5 for descriptive statistics). The test (measured)
RTs were longer than the control (actual) RTs on every trial (on
average by 59ms, SD = 11ms). Although this overestimation of
RTmay seem large, it is within the range of latencies reported by
prior research. For instance, Reimers and Stewart (2014) found
RT overestimation by 30–100 ms when using JavaScript and
Flash timing methods across a range of devices. Plant and
Turner (2009) found significant lags in two contributors to this
latency: keyboards (delays up to 34 ms) and speaker systems
(delays up to 37 ms). Psychology Software Tools Inc., the
makers of E-Prime, a leading in-lab stimulus presentation soft-
ware program, found an even greater range of speaker system
lags, up to a mean of 368 ms for some hardware and firmware
combinations (Psychology Software Tools, 2014).

The date method providedmeasurements closer to the actual
values than did the audio method, F(1, 996) = 13.94, MSE <
.001, p < .001, ηp

2 = .02, and measurements were closer to the
actual values in the low-load than in the high-load condition,
F(1, 996) = 19.72, p < .001,MSE < .001, ηp

2 = .02. In addition,
a significant Method × Load interaction emerged, F(1, 996) =
27.00, MSE < .001, p < .001, ηp

2 = .03. Planned comparisons
indicated that the cause for the interaction was a significant
effect of load for the date method, t(498) = −5.00, p < .001,
Cohen’s d = −0.45, but not for the audio method, t(498) = 1.39,
p = .17, Cohen’s d = 0.12. These analyses demonstrate that the
effect of loadwas greater for the date than for the audiomethod.
Moreover, Levene’s test for equality of variances showed that
the variance in measurement error for the audio method was
significantly smaller than those related to the date method for
both the low-load, F(1, 498) = 26.89, p < .001, and high-load
F(1, 498) = 4.74, p = .03, conditions.

How should we compare these timing methods? The two
most salient criteria are the mean and variance of each
method’s timing error, but the first criterion is rarely relevant:
Actual RTs collected from uncontrolled timing systems should
not be used alone to support theoretical results, because the
amounts of lag in these systems are inconsistent across partic-
ipants, and thus cannot be accounted for (unlike in carefully
controlled laboratory settings). Instead, RT measurements in
this context are used comparatively; that is, the result sought is
the difference between RTs in two separate conditions (e.g.,
lexically hard words vs. easy words) on a participant-by-
participant basis. When RTs from the same participant (and,
consequently, the same computer system) are treated in this
way, the error value (latency) is largely removed via subtrac-
tion. For within-subjects studies evaluating item differences
(e.g., evaluating the influence of lexical variables on word
recognition), differences in measurement error due to hard-
ware or load across participants will affect all words equally,
and therefore will not systematically bias the results. Using
statistical techniques such as mixed-effect models that include
random effects for participants can also account for participant
variability in measurement errors.

Therefore, for most analyses, variance in errors is the crit-
ical statistic for comparing measurement methods. Examining
Table 5, we see that in comparison to the date method, the
audio method results in more robust measurements, due to its
lower variance. This is especially true when systems are under
computational stress: Note that the audio method’s SD appears
to be minimally affected by an increase in processor load.
Also reassuring is the fact that these SDs are close to the range
produced by popular in-lab experiment software packages
when used with a computer keyboard (rather than a special-
ized response device). For example, Schubert, Murteira,
Collins, and Lopes (2013) found that E-Prime, DMDX,
Inquisit, and Superlab have respective measurement error
SDs of 3.30, 3.18, 3.20, and 4.17 ms. It is important to note,

Table 5 Means and standard deviations for measurement errors,
measured by the date and audio timing methods in two processor load
conditions

5 % load 65 % load

Mean SD Mean SD

Date method 54.67 5.88 61.34 20.21

Audio method 60.85 4.29 60.33 4.09

Times are in milliseconds.
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however, that the values listed in Table 5 are not universal
results; they are specific to the hardware, firmware, and soft-
ware combination that was used. Instead, these results repre-
sent a general pattern of increased measurement quality pro-
vided by the audio method relative to the date method. Due to
our conservative choice of technology, this difference is ex-
pected to remain the same or become more pronounced under
other circumstances.

For the experimenter planning an online study requiring
measurements of reaction speeds to auditory stimuli, these
results should be reassuring. Under light processor load, both
methods are roughly equivalent and not far from the fidelity
provided by in-lab setups. The decision of which method to
use depends primarily on whether it is more important to sup-
port Internet Explorer or to measure RTs in a way that is
resilient to varying processor loads. Although current browser
statistics for AMT users are difficult to find, Internet
Explorer’s relatively small market share on the Internet as a
whole (13 % including or 19 % excluding mobile devices;
StatCounter, 2015), combined with anecdotal evidence that
AMT users prefer other Web browsers, suggests that sacrific-
ing universal browser support may not significantly affect the
results. This, along with the fact that the Web Audio API is
designed specifically for situations like these, motivates the
authors’ belief that the advantages of the audio method in
general outweigh those of the date method.

General discussion

These findings demonstrate strong consistencies in the relative
accuracies and latencies of spoken word data collected in the
lab and online. In addition, the results show that lab and online
data are very similarly correlated with well-established lexical
variables. For researchers concerned with modeling spoken
word recognition or whose primary focus is evaluating
stimulus-level differences, these results suggest that AMT
can be an effective venue for data collection. In addition to
the fact that these data may be obtained more cheaply and
quickly, data collected online may have other distinct advan-
tages for research on spoken word recognition.

As we described in the introduction, the lack of environ-
mental control inherent in online research is often interpreted
as a limitation. Yet, in the context of spoken word recognition
research, it may actually be advantageous. For example, if
researchers are seeking to evaluate the confusability of word
pairs or the intelligibility of speech tokens, having diverse
listening situations will yield a better approximation of general
confusability and intelligibility than do data obtained from
stimuli presented in a carefully controlled setting. Therefore,
the conclusions drawn from online experimentation may be
expected to be more robust and generalizable to natural set-
tings than lab-collected findings.

In addition to environmental variability, participant vari-
ability may be valuable for research on spoken word recogni-
tion. The growing body of literature that demonstrates the
relationship between cognitive abilities and language-
processing ability (Benichov, Cox, Tun, & Wingfield, 2012)
suggests that college students, a population that does not rep-
resent the general population cognitively, may not be expected
to represent the general population in language-processing
abilities. Furthermore, AMT provides the opportunity to at-
tract participants with a broader range of linguistic back-
grounds and experiences, providing a richer participant source
for research concerned with accented speech or cross-cultural
language processing.

The results of Experiment 2 demonstrate that the Web
Audio API recently adopted by popular browsers can indeed
provide more accurate time measurements. Although some
delay is unavoidable, the audio time-polling method was
found to provide significantly more consistent measurements,
especially in the high-processor-load condition. The data sup-
port the use of the Web Audio API’s timing and audio sched-
uling by researchers hoping to investigate potentially subtle
effects related to auditory perception.

Although online research is promising in many regards, it
is probably not yet well-suited for certain auditory perception
tasks. Given the current technology, it appears that collecting
measurements near hearing thresholds or presenting stimuli
that require precise control over auditory amplitude will be
difficult. However, Cooke et al. (2013) proposed a possible
solution, by asking additional questions of participants such as
the level of noise that they completed the task in and whether
they were listening through headphones or speakers. Future
studies could consider filtering participants on the basis of
their responses to these types of questions. Another approach
could be to present participants with a pretest in which they
completed a two-alternative forced choice task for the detec-
tion of stimuli at varying intensities. This could give a direct
measurement of stimulus detectability, which could be used to
approximate the combined influences of the hearing level of
the user and the environment in which the study was
conducted.

In addition, more research will be required to determine
whether and under which circumstances RT experiments con-
cerned with individual differences can be conducted online. In
cases in which computer performance is distributed uniformly
across groups of individuals, researchers may be able to avoid
bias. However, in cases in which this cannot be guaranteed,
one must be very cautious. For instance, an online study com-
paring the RTs of different age groups may yield biased results
as a product of computer age (and, therefore, computer per-
formance) being correlated with participant age.

More generally, behavioral studies that are focused on eval-
uating absolute performance levels would require care when
drawing direct comparisons between in-lab and AMT data.
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Given the measurement lag that is unavoidable in consumer
devices, as well as the work suggesting that performance is
likely to be less accurate on AMT than in laboratory measures
(Cooke et al., 2013), it is important to acknowledge differ-
ences in motivation, environment, technology, and demo-
graphics when presenting such data. It is also important to
keep in mind that the results of this study do not reflect the
additional challenges associatedwith experiments that employ
multimedia stimuli. Tightly synchronizing visual and auditory
presentation is difficult, let alone measuring RTs relative to
such stimuli. Although the Web Audio API is designed to
aid in such circumstances, work beyond the present study will
be required to verify the interface’s ability to do so in the
context of psychological research.

Author note We are grateful to Violet Brown and Emily Massell for
assistance with data collection, and to Dennis Barbour, Sarah Meerts, and
Julie Neiworth for helpful comments on a previous draft. This research
was supported in part by a grant from Howard Hughes Medical Institute
to the Carleton College Interdisciplinary Science and Math Initiative
(Grant No. 52006286). Portions of this work were presented at the
Auditory Perception, Cognition, & Action Meeting in November 2014.

References

Adenot, P., & Wilson, C. (2015). Web audio API (W3C editor’s draft).
Retrieved January 8, 2015, from http://webaudio.github.io/web-
audio-api/

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B.,
Loftis, B., & Treiman, R. (2007). The english lexicon project.
Behavior Research Methods, 39, 445–459. doi:10.3758/
BF03193014

Benichov, J., Cox, L., Tun, P., &Wingfield, A. (2012). Word recognition
within a linguistic context: Effects of age, hearing acuity, verbal
ability and cognitive function. Ear and Hearing, 32, 250–256. doi:
10.1097/AUD.0b013e31822f680f.Word

Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A
critical evaluation of current word frequency norms and the intro-
duction of a new and improved word frequency measure for
American English. Behavior Research Methods, 41, 977–990. doi:
10.3758/BRM.41.4.977

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science, 6, 3–5. doi:10.1177/
1745691610393980

Connine, C. M., Mullennix, J., Shernoff, E., & Yelen, J. (1990). Word
familiarity and frequency in visual and auditory word recognition.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 16, 1084–1096. doi:10.1037/0278-7393.16.6.1084

Cooke, M., Barker, J., Garcia Lecumberri, M., & Wasilewski, K. (2011).
Crowdsourcing for word recognition in noise. In P. Cosi, R. De
Mori, G. Di Fabbrizio, & R. Pieraccini (Eds.), Proceedings of
Interspeech 2011 (pp. 3049–3052). Grenoble, France: International
Speech Communication Association.

Cooke, M., Barker, J., Lecumberri, M. L. G., & Wasilewski, K. (2013).
Crowdsourcing for speech perception. In M. Eskenazi, G. Levow, &
H. Meng (Eds.), Crowdsourcing for speech processing:
Applications to data collection, transcription and assessment (pp.
137–172). New York, NY: Wiley.

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating
Amazon’s Mechanical Turk as a tool for experimental behavioral
research. PLoS ONE, 8, e57410. doi:10.1371/journal.pone.0057410

Dahan, D., & Magnuson, J. S. (2006). Spoken word recognition. In M. J.
Traxler &M. A. Gernsbacher (Eds.),Handbook of psycholinguistics
(2nd ed., pp. 249–283). San Diego, CA: Academic Press.

Field, A. (2009). Discovering statistics using SPSS. London, UK: Sage.
Goh, W. D., Suárez, L., Yap, M. J., & Tan, S. H. (2009). Distributional

analyses in auditory lexical decision: Neighborhood density and
word-frequency effects. Psychonomic Bulletin & Review, 16, 882–
887. doi:10.3758/PBR.16.5.882

Goldinger, S. D. (1996). Auditory lexical decision. Language &
Cognitive Processes, 11, 559–568. doi:10.1080/016909696386944

Google, Inc. (2014). reCAPTCHA. Retrieved from www.google.com/
recaptcha

Kaiser, A. R. (2003). Talker and lexical effects on audiovisual word
recognition by adults with cochlear implants. Journal of Speech,
Language, and Hearing Research, 46, 390–404. doi:10.1044/
1092-4388(2003/032)

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-
of-acquisition ratings for 30,000 English words. Behavior Research
Methods, 44, 978–990. doi:10.3758/s13428-012-0210-4

Luce, P. A., Goldinger, S. D., Auer, E. T., & Vitevitch, M. S. (2000).
Phonetic priming, neighborhood activation, and PARSYN.
Perception, 62, 615–625. doi:10.3758/BF03212113

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The
neighborhood activation model. Ear and Hearing, 19, 1–36. doi:
10.1097/00003446-199802000-00001

Luce, P. A., Pisoni, D., & Goldinger, S. (1990). Similarity neighborhoods
of spoken words. In G. Altmann (Ed.), Cognitive models of speech
processing (pp. 122–147). Cambridge, MA: MIT Press.

Mason, W., & Suri, S. (2011). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44, 1–
23. doi:10.3758/s13428-011-0124-6

Mayo, C., Aubanel, V., & Cooke, M. (2012). Effect of prosodic changes
on speech intelligibility. In Proceedings of Interspeech 2012 (pp.
1708–1711). Grenoble, France: Internat ional Speech
Communication Association.

McClelland, J. L., Elman, J. L., & Diego, S. (1986). The TRACE model
of speech perception. Cognitive Psychology, 18, 1–86. doi:10.1016/
0010-0285(86)90015-0

McDonnell, J. V., Martin, J. B., Markant, D. B., Coenen, A., Rich, A. S.,
& Gureckis, T. M. (2012). psiTurk (Version 1.02) [Software]. New
York, NY: New York University. Retrieved from https://github.com/
NYUCCL/psiTurk

Nygaard, L. C., & Pisoni, D. B. (1998). Talker-specific learning in speech
perception. Perception & Psychophysics, 60, 355–376.

Paolacci, G., Chandler, J., & Ipeirotis, P. (2010). Running experiments on
AmazonMechanical Turk. Judgment and DecisionMaking, 5, 411–
419.

Pisoni, D. B. (1996). Word identification in noise. Language & Cognitive
Processes, 11, 681–688. doi:10.1080/016909696387097

Plant, R. R., & Turner, G. (2009). Millisecond precision psychological
research in a world of commodity computers: New hardware, new
problems? Behavior Research Methods, 41, 598–614. doi:10.3758/
BRM.41.3.598

Psychology Software Tools, Inc. (2014). Sound startup latency tests
[Software]. Retrieved from www.pstnet.com/eprimestartup.cfm

Reimers, S., & Stewart, N. (2014). Presentation and response timing
accuracy in Adobe Flash and HTML5/JavaScript Web experiments.
Behavior Research Methods. doi:10.3758/s13428-014-0471-1

Savin, H. B. (1963).Word-frequency effect and errors in the perception of
speech. Journal of the Acoustical Society of America, 35, 200.

Schubert, T. W., Murteira, C., Collins, E. C., & Lopes, D. (2013).
ScriptingRT: A software library for collecting response latencies in

Behav Res

http://webaudio.github.io/web-audio-api/
http://webaudio.github.io/web-audio-api/
http://dx.doi.org/10.3758/BF03193014
http://dx.doi.org/10.3758/BF03193014
http://dx.doi.org/10.1097/AUD.0b013e31822f680f.Word
http://dx.doi.org/10.3758/BRM.41.4.977
http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1037/0278-7393.16.6.1084
http://dx.doi.org/10.1371/journal.pone.0057410
http://dx.doi.org/10.3758/PBR.16.5.882
http://dx.doi.org/10.1080/016909696386944
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://dx.doi.org/10.1044/1092-4388(2003/�032)
http://dx.doi.org/10.1044/1092-4388(2003/�032)
http://dx.doi.org/10.3758/s13428-012-0210-4
http://dx.doi.org/10.3758/BF03212113
http://dx.doi.org/10.1097/00003446-199802000-00001
http://dx.doi.org/10.3758/s13428-011-0124-6
http://dx.doi.org/10.1016/0010-0285(86)90015-0
http://dx.doi.org/10.1016/0010-0285(86)90015-0
https://github.com/NYUCCL/psiTurk
https://github.com/NYUCCL/psiTurk
https://github.com/NYUCCL/psiTurk
http://dx.doi.org/10.1080/016909696387097
http://dx.doi.org/10.3758/BRM.41.3.598
http://dx.doi.org/10.3758/BRM.41.3.598
http://www.pstnet.com/eprimestartup.cfm
http://dx.doi.org/10.3758/s13428-014-0471-1


online studies of cognition. PLoS ONE, 8, e67769. doi:10.1371/
journal.pone.0067769

Simcox, T., & Fiez, J. A. (2014). Collecting response times using
Amazon Mechanical Turk and Adobe Flash. Behavior Research
Methods, 46, 95–111. doi:10.3758/s13428-013-0345-y

Smus, B. (2012). Developing game audio with the Web audio API.
Retrieved from http://html5rocks.com

Sommers, M. S. (1996). The structural organization of the mental lexicon
and its contribution to age-related declines in spoken-word recogni-
tion. Psychology and Aging, 11, 333–341. doi:10.1037/0882-7974.
11.2.333

Sommers, M. S. (2002). Washington University Speech and Hearing Lab
NeighborhoodDatabase. Retrieved from http://neighborhoodsearch.
wustl.edu/Home.asp

Sommers, M. S., & Danielson, S. M. (1999). Inhibitory processes and
spoken word recognition in young and older adults: The interaction
of lexical competition and semantic context. Psychology and Aging,
14, 458–472.

StatCounter. (2015). StatCounter global stats. Retrieved from http://gs.
statcounter.com

Strand, J. F. (2014). Phi-Square Lexical Competition Database (Phi-Lex):
An online tool for quantifying auditory and visual lexical competi-
tion. Behavior Research Methods, 46, 148–158. doi:10.3758/
s13428-013-0356-8

Strand, J. F., & Sommers, M. S. (2011). Sizing up the competition:
Quantifying the influence of the mental lexicon on auditory and
visual spoken word recognition. Journal of the Acoustical Society
of America, 130, 1663. doi:10.1121/1.3613930

Turner, J. E., Valentine, T., & Ellis, A. W. (1998). Contrasting effects of
age of acquisition and word frequency on auditory and visual lexical
decision. Memory & Cognition, 26, 1282–1291. doi:10.3758/
BF03201200

Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels of
processing in perception of spoken words. Psychological Science, 9,
325–329. doi:10.1111/1467-9280.00064

Vitevitch, M. S., & Luce, P. A. (2004). AWeb-based interface to calculate
phonotactic probability for words and nonwords in English.
Behavior Research Methods, Instruments, & Computers, 36, 481–
487. doi:10.3758/BF03195594

Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999).
Phonotactics, neighborhood activation, and lexical access for spo-
ken words. Brain and Language, 68, 306–311. doi:10.1006/brln.
1999.2116

Weber, A., & Scharenborg, O. (2012). Models of spoken-word recogni-
tion. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 387–
401. doi:10.1002/wcs.1178

Wilson, C. (2013). A tale of two clocks—Scheduling Web audio with
precision. Retrieved from www.html5rocks.com/en/tutorials/audio/
scheduling/

Wolters, M. K., Isaac, K. B., & Renals, S. (2010). Evaluating speech
synthesis intelligibility using Amazon Mechanical Turk. In Y.
Sagisaka & K. Tokuda (Eds.), Proceedings of the 7th Speech
Synthesis Workshop (SSW7) (pp. 136–141). Kyoto, Japan:
National Institute of Information and Communications
Technology. Retrieved from http://isw3.naist.jp/~tomoki/ssw7/
www/doc/ssw7_proceedings_rev.pdf

Behav Res

http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.3758/s13428-013-0345-y
http://html5rocks.com/
http://dx.doi.org/10.1037/0882-7974.11.2.333
http://dx.doi.org/10.1037/0882-7974.11.2.333
http://neighborhoodsearch.wustl.edu/Home.asp
http://neighborhoodsearch.wustl.edu/Home.asp
http://gs.statcounter.com/
http://gs.statcounter.com/
http://dx.doi.org/10.3758/s13428-013-0356-8
http://dx.doi.org/10.3758/s13428-013-0356-8
http://dx.doi.org/10.1121/1.3613930
http://dx.doi.org/10.3758/BF03201200
http://dx.doi.org/10.3758/BF03201200
http://dx.doi.org/10.1111/1467-9280.00064
http://dx.doi.org/10.3758/BF03195594
http://dx.doi.org/10.1006/brln.1999.2116
http://dx.doi.org/10.1006/brln.1999.2116
http://dx.doi.org/10.1002/wcs.1178
http://www.html5rocks.com/en/tutorials/audio/scheduling/
http://www.html5rocks.com/en/tutorials/audio/scheduling/
http://isw3.naist.jp/%7Etomoki/ssw7/www/doc/ssw7_proceedings_rev.pdf
http://isw3.naist.jp/%7Etomoki/ssw7/www/doc/ssw7_proceedings_rev.pdf

	Conducting spoken word recognition research online: Validation and a new timing method
	Abstract
	Experiment 1
	Method
	Participants
	Stimuli
	Procedure

	Results and discussion
	Word identification
	Auditory lexical decision task
	Links with lexical variables
	Browser and operating system statistics
	Performance across the tasks


	Experiment 2
	Method
	Results and discussion
	General discussion
	References


