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Abstract A widely agreed-upon feature of spoken word
recognition is that multiple lexical candidates in memory
are simultaneously activated in parallel when a listener hears
a word, and that those candidates compete for recognition
(Luce, Goldinger, Auer, & Vitevitch, Perception 62:615–
625, 2000; Luce & Pisoni, Ear and Hearing 19:1–36, 1998;
McClelland & Elman, Cognitive Psychology 18:1–86, 1986).
Because the presence of those competitors influences word
recognition, much research has sought to quantify the pro-
cesses of lexical competition. Metrics that quantify lexical
competition continuously are more effective predictors of
auditory and visual (lipread) spoken word recognition than
are the categorical metrics traditionally used (Feld &
Sommers, Speech Communication 53:220–228, 2011; Strand
& Sommers, Journal of the Acoustical Society of America
130:1663–1672, 2011). A limitation of the continuous metrics
is that they are somewhat computationally cumbersome
and require access to existing speech databases. This
article describes the Phi-square Lexical Competition
Database (Phi-Lex): an online, searchable database that
provides access to multiple metrics of auditory and visual
(lipread) lexical competition for English words, available at
www.juliastrand.com/phi-lex.
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Lexical competition

When a speaker utters a word, the listener is tasked with
matching that acoustic–phonetic input to a lexical item
stored in memory. Given the size of the mental lexicon and
the speed with which speech occurs, spoken word recogni-
tion is an impressive feat of human cognition. Although

models of spoken word recognition differ in the details of
how recognition occurs, there is general agreement about
two features of the process: Input simultaneously activates
multiple lexical items in memory, and these items then com-
pete for recognition (see Weber & Scharenborg, 2012). The
most common method for quantifying which items are acti-
vated in parallel has been to identify a group (a “neighbor-
hood”) of words that are perceptually similar to a stimulus
word (Newman, Sawusch, & Luce, 1997; Tye-Murray,
Sommers, & Spehar, 2007; but see Luce & Pisoni, 1998,
and Strand & Sommers, 2011, for alternative approaches).
These “neighbors” include any word that can be formed by a
single phoneme addition, deletion, or substitution from the
stimulus word. For example, neighbors of “cat” include
“cot” (a substitution), “at” (a deletion), and “cast” (an addi-
tion). Words with many neighbors are subject to more lexical
competition, and this competition comes at a cost: Stimulus
words with many neighbors are recognized more slowly and
less accurately than words with few neighbors (Goldinger,
Luce, & Pisoni, 1989; Luce & Pisoni, 1998; Strand &
Sommers, 2011; Vitevitch & Luce, 1998).

Measures based on neighborhood size have proved to be
very informative, but their binary nature has limitations.
Words are classified as “neighbors” or “not neighbors” of a
stimulus word, and therefore it is not possible to specify
which neighbors are especially perceptually similar to the
stimulus word and which are less similar.1 Implicit in the
neighborhood-based metric is the assumption that each
neighbor provides an equivalent amount of competition
(e.g., that “at” and “cut” both provide the same amount of
competition for “cat”). Also implicit is the assumption that
words that differ by more than one phoneme provide no

1 In visual (written) word recognition, others (Yarkoni, Balota, & Yap,
2008) have identified limitations of categorical measures of competition
and demonstrated that continuous measures account better for human
word recognition.
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competition for the stimulus word (e.g., although “cast”
competes with “cat,” “clad” does not). Because many models
of recognition (e.g., Luce, Goldinger, Auer, & Vitevitch,
2000; Luce & Pisoni, 1998; McClelland & Elman, 1986)
assume that activation is graded (with the degree of
activation being based on the degree of perceptual sim-
ilarity), these assumptions may not adequately explain
the processes of lexical activation and competition. The
models describe a structure in which perceptually salient
differences between words create a continuum, but
neighbor-based approaches ignore this by categorizing
words as being either inside or outside the neighbor-
hood boundary.

To overcome the limitations of categorical metrics of compe-
tition, other measures have been introduced that quantify percep-
tual similarity—and thus, lexical competition—continuously
(Luce & Pisoni, 1998; Strand & Sommers, 2011; see also
Strauss, Harris, & Magnuson, 2007). In these metrics, the per-
ceptual similarity of a stimulus word and each of its competitors
is quantified on the basis of the degree to which the phonemes of
a stimulus word are perceptually confusable with the phonemes
of a competitor word. Unlike the categorical measures, these
continuous measures quantify the amount of perceptual similar-
ity, and therefore, the expected competition that each word exerts
on the stimulus word. For example, “pat” and “bat” are both
neighbors of “cat,” but /p/ and /k/ are more perceptually
confusable than /b/ and /k/ (likely because /b/ differs from /k/
in both place of articulation and voicing, whereas /p/ differs only
in place of articulation). Therefore, when “cat” is presented, “pat”
will receive more activation, and therefore provide more compe-
tition than “bat” does. Instead of counting how many words
compete with the stimulus word (as neighborhood-based metrics
do), continuous measures quantify how much the competitors
compete with the stimulus word. Continuous measures of lexical
competition explain significant unique variance in spoken word
recognition, beyond that accounted for by categorical,
neighborhood-based metrics (Feld & Sommers, 2011; Strand &
Sommers, 2011). This predictive power comes both from quan-
tifying lexical competition continuously and from including a
larger subset of the lexicon as possible competitors (Strand &
Sommers, 2011).

Although models of word recognition were designed for
auditory speech, they have also been adapted to describe
visual spoken word recognition (lipreading; Feld &
Sommers, 2011; Iverson, Bernstein, & Auer, 1998; Tye-
Murray et al., 2007). Whereas auditory competitors are words
that sound similar (e.g., “cat” and “cap”), visual competitors
are those that look similar on a speaking face (e.g., “fat and
“vat”; Binnie, Montgomery, & Jackson, 1974). Because of the
nature of the auditory and visual signals, words that are highly
perceptually similar in one modality may not be in another.
For example, information about place of articulation is
distorted by noise but is easy to identify on the face (Binnie

et al., 1974). Therefore, “cat” and “pat” are easily confusable
in the auditory domain but look very different on a talking
face, so they are not likely to be confused while lipreading.
Thus, the amounts of lexical competition that a word encoun-
ters in the auditory and visual domains are not correlated
(Strand & Sommers, 2011). As a result, it is necessary to
determine modality-specific measures of lexical competition
in order to predict auditory and visual word recognition.

Although the composition of a stimulus word’s competitors
may differ in the auditory and visual domains, the effects that
these competitors have are the same: Words that are visually
similar to many other words are lipread less accurately than
those that are similar to few other words (Mattys, Bernstein, &
Auer, 2002; Tye-Murray et al., 2007). Lexical competition in
visual word recognition has been modeled both categorically,
by counting the number of visual neighbors (Iverson et al.,
1998; Mattys et al., 2002), and continuously, following the
process used for auditory competitors (Auer, 2002; Feld &
Sommers, 2011; Strand & Sommers, 2011). As in the auditory
domain, continuous measures account for significant unique
variance in word recognition accuracy, beyond that accounted
for by categorical, neighborhood-based metrics (Feld &
Sommers, 2009; Strand & Sommers, 2011).

Although continuous measures are effective predictors of
spoken word recognition in both the auditory and visual
domains, they are somewhat computationally cumbersome.
In addition, existing databases offer access to categorical
measures of lexical competition (Balota et al., 2007;
Sommers, 2002), but currently no publically accessible data-
bases provide continuous measures of lexical competition in
the auditory domain, nor do any databases include measures
for lexical competition in the visual domain. This article de-
scribes the Phi-square Lexical Competition Database (Phi-
Lex), an online, searchable database that contains multiple
values for auditory and visual lexical competition for nearly
5,000 words. The goal of this database is to make continuous
measures of auditory and visual lexical competition easily
accessible to the scientific community.

Construction of the database

Phonological transcriptions and frequency-of-occurrence data
for 40,481 English words were obtained from an existing
database, the English Lexicon Project (ELP; Balota et al.,
2007). The ELP contains words that range from one (e.g.,
“I”) to 17 (e.g., “electrocardiogram”) phonemes long. Longer
words tend to be more perceptually distinct and to have less
variability in distinctiveness (Storkel, 2004). For example,
three-phoneme words in the ELP database have an average
of 19.66 neighbors (SD = 10.18); four-phoneme words have
an average of 8.65 neighbors (SD = 6.09); for five-phoneme
words, the average number drops to 3.00 (SD = 3.27); and six-
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phoneme words have an average of just 1.0 neighbor (SD =
1.54). In addition, given that the majority of studies of spoken
word recognition, and especially those concerned with lexical
competition, are conducted on shorter words, the database is
restricted to three- and four-phoneme words (referred to as the
target words; N = 4,864).

For each of the target words, multiple measures of audi-
tory and visual lexical competition were generated. Each of
these measures makes somewhat different assumptions
about the nature of lexical competition; including all of them
would allow those assumptions to be tested. Most users of
Phi-Lex will not wish to retrieve values for every metric of
competition, but multiple measures are included in order to
make the database as versatile as possible. Although cate-
gorical measures of lexical competition are available else-
where (Balota et al., 2007; Sommers, 2002; Vaden, Halpin,
& Hickok, 2009), they are included here because the number
of neighbors that a word has depends on the idiosyncrasies
and phonological transcriptions of the reference lexicon be-
ing used. In order to provide more direct comparisons be-
tween categorical and continuous measures, and between
auditory and visual word recognition, all of the measures
were calculated from the same reference lexicon (N = 7,000),
which includes all two- to five-phoneme words with one
vowel from the ELP. It is certainly possible that words with
six or more phonemes could provide some competition for
the target words. However, because of the data set used to
calculate continuous measures of competition (see the audi-
tory Continuous Measures section below), it was not possi-
ble to quantify the amount of competition between words
with different numbers of vowels. Given that all of the target
words have one vowel and words with six or more phonemes
from the ELP have an average of 2.13 vowels, the reference
lexicon was restricted to words with fewer than six pho-
nemes. Brief descriptions of the measures are given in
Table 1; a more complete discussion of each follows.

Notes on homophones

A large number of English words are pronounced the same
way but are spelled differently (e.g., “write” and “right”; but
see Gahl, 2008). Given this fact, the ELP—and therefore the
reference lexicon—includes multiple entries for phonological-
ly identical words. This complicates calculations of lexical
competition, because it is unclear whether each separate spell-
ing of a homophone should serve as a competitor (e.g., for the
target word “tight,” should “write” and “right” serve as one
competitor or two?). Aurally perceived homophones provide
activation for both semantic interpretations [e.g., /do/ primes
both “bread” (dough) and “deer” (doe); Fleming, 1993], which
may suggest multiple, separate entries for homophones in the
mental lexicon. If homophonous words have multiple entries
in the mental lexicon, we might expect measures of lexical

competition that include all entries of homophones to ac-
count for more variance in word recognition than do mea-
sures that do not include all homophones. In the current
database, measures of lexical competition were calculated
using the 7,000-word reference lexicon, which lists homo-
phones as separate entries. In addition, all measures of
lexical competition were calculated using a subset of that
lexicon (N = 6,296 words) that excluded multiple entries of
homophones (but included the most frequently occurring
homophone). For example, although the 7,000-word lexi-
con contains both “right” and “write,” the 6,296-word lex-
icon excludes “write” (the less common member of the
homophone pair). In the online database, measures calcu-
lated with this limited lexicon are labeled “no homophones”
or “NH.”

Measures of auditory lexical competition in the database

Categorical measures Auditory neighborhoods were built
for each of the target words by counting the numbers of
words in the reference lexicon that could be formed by the
addition, deletion, or substitution of a single phoneme
(Density B [a_denb]2). In addition, a subset of those words
that include only phoneme substitutions was also calculated
for each target word (Density A [a_dena]; Large & Pisoni,
1998; Nusbaum, Pisoni, & Davis, 1984; Sommers, 2002).
For example, the Density B neighbors of “cat” include “cast,
“at,” “mat,” and “bat,” but of those, only “mat” and “bat”
would be included in Density A. The numbers of Density A
and Density B values calculated here correlate highly with
values available elsewhere (Sommers, 2002): r = .88 (f 2 =
3.43) for the two measures of Density A, r = .89 (f 2 = 3.81)
for the two measures of Density B, p < .01. Although Density
B values are more commonly used than Density A values,
Density A values are included in order to more closely
parallel analyses in the visual domain, which are based only
on phoneme-substitution neighbors (see below). In addition
to counting the numbers of Density B and Density A neigh-
bors, the average log frequency of occurrence for the neigh-
bors (adopted from Lund & Burgess, 1996) is included in the
database for each measure [a_denb_freq and a_dena_freq].
Finally, for each target word, the numbers of higher-
frequency neighbors were calculated for both Density B
and Density A [a_denb_hfn and a_dena_hfn]. This measure
may give additional information about the neighborhood
composition. For example, “vet” and “ridge” have the same
frequency (8.9) and number of neighbors (17), but 12 neigh-
bors of “vet” are of higher frequency than it is, whereas only
six neighbors of “ridge” are of higher frequency.

2 Labels used in the database are indicated in brackets throughout the
text.
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Continuous measures To represent the assumption that lex-
ical competition is graded (with more similar words provid-
ing more competition), Luce and Pisoni (1998) devised a
metric called neighbor word probabilities (NWPs) that quan-
tifies lexical competition continuously. NWPs quantify how
perceptually similar two words are on the basis of the con-
ditional probability that a target word’s segments would be
confused with the segments of a competitor word (Luce,
1986; Luce & Pisoni, 1998). For example, the probability
that a listener would perceive “bid” when presented with
“cat” was quantified as NWP(bId | kæt) = p(b | k) * p(I | æ)
* p(d | t), where the p values are based on the likelihood that
two phonemes would be confused for one another on a
forced choice phoneme identification task. Therefore, words
that have more confusable segments and more overlapping
segments would be expected to provide greater competition
for one another than do those that differ by multiple seg-
ments or that have dissimilar segments. For example, “cat”
and “cap” would have a high NWP because “t” and “p” are
reasonably confusable (Miller & Nicely, 1955), whereas
“cat” and “lore” have a very low NWP because they differ
by multiple phonemes, and those phonemes are not very
confusable with one another.

Measures based on NWPs account for significant vari-
ance in word recognition accuracy (Luce, 1986; Luce &

Pisoni, 1998). However, using probabilities of confusion as
a metric for perceptual similarity has several limitations
(see Iverson et al., 1998, and Strand & Sommers, 2011,
for more detailed discussion of these issues). First, they are
susceptible to response biases. If a participant has a tenden-
cy to respond with a certain phoneme for reasons unrelated
to the task (e.g., regularly pressing the key closest to the
resting position), the probabilities of confusion would con-
tain artifacts. Second, the number of perceptually similar
alternatives interacts with the probabilities. Hypothetically,
if /m/ and /n/ are perceptually very similar to each other and
not to any other phonemes, they should be expected to be
confused on approximately 50% of trials. If /p/, /t/, /k/, and
/θ/ are very similar to one another but not to any other
phonemes, any given pair should be expected to be con-
fused on 25% of trials. This leads to the incorrect impres-
sion that /m/ and /n/ are twice as confusable as /t/ and /p/.
These limitations prompted Iverson et al. to use the phi-
square statistic as an alternative measure of phoneme sim-
ilarity (see also Strand & Sommers, 2011, for prior discus-
sion of these issues). The phi-square statistic (a normalized
version of the chi-square statistic) makes it possible to
calculate the perceptual similarity of phoneme pairs while
reducing the problems with confusion probabilities. The
phi-square statistic is expressed as:

Table 1 Summary of measures of lexical competition

Auditory Categorical a_denb Number of neighbors

a_denb_freq Average frequency of neighbors

a_dena Number of substitution-only neighbors

a_dena_freq Average frequency of substitution-only neighbors

a_denb_hfn Number of higher frequency neighbors

a_dena_hfn Number of higher frequency substitution-only neighbors

Continuous a_psum Phi-square density

a_pskew Phi-square skew

a_pkurt Phi-square kurtosis

a_psd Phi-square standard deviation

a_pfwsum Phi-square frequency-weighted density

a_wt_psum Phi-square density of words within type (e.g., CVCs for a CVC target)

a_wt_pskew Phi-square skew of words within type

a_wt_pkurt Phi-square kurtosis of words within type

a_wt_psd Phi-square standard deviation of words within type

a_wt_pfwsum Phi-square frequency weighted density of words within type

Visual Categorical v_lec Size of lexical equivalence class (number of visual neighbors)

v_lec_freq Average frequency of words within the lexical equivalence class

Continuous v_psum Phi-square density

v_pskew Phi-square skew

v_pkurt Phi-square kurtosis

v_psd Phi-square standard deviation

v_pfwsum Phi-square frequency-weighted density

All measures were also calculated including homophonous entries only once
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Here, xi and yi are the frequencies with which the pho-
nemes x and y were identified as phoneme i, E(xi) and E(yi)
are the expected frequencies of response for xi and yi if the
two phonemes are perceptually identical, and N is the total
number of responses to phonemes xi and yi. The expected
frequencies, E(xi) and E(yi), are determined by summing the
frequency with which phoneme x was identified with cate-
gory i and the frequency with which phoneme y was identi-
fied with category i, divided by 2. Therefore E(xi) and E(yi)
are always equal. The rationale for this method is that if
phonemes x and y are perceptually identical, they should
be identified as members of a given category with equal
frequency. Hypothetically, if /t/ and /p/ were perceptually
identical, participants should choose evenly between them
when they are presented with each other or with any other
phoneme. The phi-square statistic reaches a value of 1 when
the distributions of responses for two stimulus phonemes are
identical (i.e., participants select each response alternative
equally for both stimulus phonemes), and it reaches a value
of 0 when the distributions have no overlap (i.e., participants
do not use any of the same response categories for the two
stimulus phonemes). Confusion probabilities quantify how
regularly two phonemes are confused for one another; the
phi-square value quantifies how similar the pattern of re-
sponses to the two phonemes are (see Fig. 1). A phoneme
pair has a high phi-square value if the phonemes tend to be
confused in similar ways.

To use phi-square values to assess the perceptual similarity
of a word pair (e.g., to generate an NWP using phi-square
values), the position-specific phi-square phoneme values for
two words are multiplied (Feld & Sommers, 2011; Strand &
Sommers, 2011; see also Luce & Pisoni, 1998). For example,
the Φ2NWP(bId | kæt) = Φ2(b | k) * Φ2(I | æ) * Φ2(d | t). Word
pairs with multiple shared phonemes and those with more
perceptually similar phonemes render higher Φ2NWPs. To
quantify the overall competition that a target word encounters

within the lexicon (called the phi-square density), theΦ2NWPs
of the target word and all other words in the lexicon are
summed (e.g., Φ2NWP(word1 | target) + Φ2NWP(word2 | tar-
get) + Φ2NWP(wordN | target).3 For example, to determine the
total amount of competition the word “cat” encounters in a toy
lexicon that consists only of four words, “cat,” “cap,” “bat,” and
“ten,”Φ2NWP values would be computed for cap | cat, bat | cat,
and ten | cat. Of these, cap | cat has the highest value (because
the only deviation comes from two phonemes with a high phi-
square phoneme similarity). Bat | cat has a somewhat lower
value, because /k/ and /b/ are less perceptually similar than /k/
and /p/. Although “cat” and “ten” share no position-specific
phonemes, the phi-square similarity is still above zero,
reflecting some similarity between at least one of the phoneme
pairs (e.g., participants may occasionally confuse /ε/ and /æ/ for
each other, or may occasionally choose /I/ when presented with
/ε/ or /æ/). The phi-square density for “cat” in this toy lexicon is
Φ2NWP(cæp | cæt) +Φ2NWP (bæt | cæt) +Φ2NWP (tεn | cat).

For the continuous measures of lexical competition, phi-
square values were generated from an existing data set of forced
choice phoneme confusions (Luce, 1986). This data set in-
cludes 22 consonants in the syllable-initial position (e.g., /dæ/),
21 consonants in the syllable-final position (e.g., /æd/), and 15
vowels from the corresponding syllable-initial and syllable-final
positions. Participants (N = 122) made forced choice identifica-
tions amidst a background of white noise at 75 dB. In
the original data set, phoneme confusions were obtained
at three signal-to-noise ratios (SNRs): –5, +5, and +15.
The rates at which phonemes were confused at all three
SNRs were combined to generate phi-square values for
the present analysis. The rationale behind collapsing
across SNRs is two-fold. First, combining SNRs pro-
vides a general estimate of how confusable phoneme
pairs are (as well as increasing the number of observa-
tions for each phoneme pair), which may then be ap-
plied to other SNRs, and to predict confusability for

Fig. 1 The phonemes /f/ and /θ/ have more similar response distributions (and therefore a higher phi-square value) than do /f/ and /h/

3 Because phi-square values are generated from probability-of-
confusion values, the two are highly correlated, but measures that use
Φ2NWPs predict significant unique variance in word recognition accu-
racy after controlling for the influence of NWPs on the basis of prob-
ability of confusion (Strand & Sommers, 2011).
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stimuli that are presented without masking noise or in writing
(e.g., lexical decision or reading tasks). Therefore, this com-
bined SNR is likely to be most useful to other researchers in a
variety of settings. In addition, the confusions made at each
SNR are highly correlated (r values range from .62 to .99; f 2 >
0.66 and p < .001 for all), indicating that the patterns of
confusions are relatively consistent across SNRs, even though
overall accuracy differs (see Miller & Nicely, 1955, for addi-
tional evidence that the types of confusions made are relatively
stable across SNRs).

Although there are many published data sets of phoneme
confusions, these data were chosen as the basis for the
development of the auditory-only measures of lexical com-
petition for several reasons. First, identifications at multiple
SNRs allow for measures of lexical competition that are
more versatile. Second, the data set includes identification
data for both consonants and vowels from the same partici-
pants in the same conditions. This consistency makes com-
bining the consonant and vowel data to form NWPs less
problematic. Third, it includes syllable-initial and syllable-
final consonant identifications separately, which reflect any
differences in phoneme confusability based on position.
Finally, this data set has the benefit of having included a
“null response” category in the consonant identification tri-
als. Although participants heard a consonant-and-vowel pair
(e.g., /bæ/) on the majority of trials, on some trials, the
consonant was omitted (e.g., /æ/), but participants were still
forced to make a response about what consonant was
presented (or to indicate that no consonant was presented).
As a result, the data set contains information about how
likely participants were to report hearing each consonant
when none had been presented [i.e., p(b | Ø)], and how likely
participants were to report that no consonant was presented
when one in fact was [i.e., p(Ø | b)]. This procedure is very
helpful in the present analysis, because it allows a target
word to be compared to stimulus words of differing lengths.
For example, it is possible to compare “brat” and “rat” by
aligning the vowels and including the null-response category
for the extra phoneme, Φ2NWP(bræt | ræt) = Φ2(Ø | b) * Φ2

(r | r) * Φ2 (æ | æ) * Φ2 (t | t). Therefore, the word similarities
are multiplied by the likelihood that a participant would
report hearing /b/ when no consonant was presented.
Words that differ by many segments may be compared, as
well. For example, a consonant–vowel–consonant (CVC)
word (“cat”) may be compared to a VCC word (“ant”) by
lining up the vowels as follows:Φ2(Ø | k) *Φ2(æ | æ) *Φ2(n |
t) * Φ2(t | Ø). This method works well for consonants,
because the vowel context can be presented without a con-
sonant (e.g., /æ/ in place of /bæ/). However, it is more
problematic for vowels, because it would be difficult to occa-
sionally omit a vowel and ask a listener to identify the consonant
(e.g., /b/ in place of /bæ/). Therefore, the Luce (1986) data set did
not include a null response option in the vowel task, making it

impossible to compare words that differed in numbers of vowels
(e.g., “bait” and “abate”).

The Luce (1986) confusion matrices were converted to
phi-square values using SPSS (version 19).4 For each of the
4,864 target words, Φ2NWPs were calculated by comparing
the target word to the 7,000 other words in the reference
lexicon. Next, all of the Φ2NWPs for each target word were
summed in order to generate the auditory phi-square density
[a_psum]. This measure represents the total amount of com-
petition that each target word encounters. A frequency-
weighted measure of phi-square density was also calculated
[a_fwpsum], in which each Φ2NWPs was weighted by the
competitor word’s log frequency of occurrence (from Lund
& Burgess, 1996). For example, when compared with “cat,”
the words “catch” and “hath” both have aΦ2NWP of .27, but
because “catch” is much more frequent than “hath,” it con-
tributes a larger value in the frequency-weighted phi-square
density of “cat.” Words that have perceptually similar, high-
frequency competitors should be expected to undergo greater
lexical competition than those with perceptually similar,
low-frequency competitors (Luce & Pisoni, 1998).

Although phi-square density describes the total amount of
competition that a word encounters, it does not describe
whether the bulk of that competition comes from few, highly
perceptually similar competitors, or many, less perceptually
similar competitors. For example, “seat” and “dose” have very
similar phi-square densities (39.8 for both), but for “seat,”
much of the phi-square density comes from a cluster of highly
similar words (e.g., “feet,” and “seep”), whereas “dose” has
few highly similar competitors, so the phi-square density
comes from a greater number of less-similar words (e.g.,
“dope,” “dough,” “deuce,” “boat,” and “both”). Models of
word recognition do not make predictions about how these
differences should affect word recognition, but including
values that pertain to dispersion, as well as the total summed
density, addresses the issue. Therefore, for each target word,
values for the standard deviation [a_psd], kurtosis [a_pkurt],
and skew [a_pskew] of theΦ2NWPswere also calculated. The
difference in the distributions of “seat” and “dose” is reflected
in the standard deviation: “Dose” has a relatively low standard
deviation (.014), reflecting the fact that the competition is
dispersed, whereas “seat” has a relatively high one (.022).

Finally, all values (sum, standard deviation, skew, and
kurtosis) were calculated by comparing each target word
only to words with the same consonant/vowel pattern type
(e.g., a CVC compared with only CVCs). These values are
designated “_wt” (within type) in the database. This method
is somewhat akin to Density A, because only words that are

4 This is a standard command in SPSS, and can be completed using the
following syntax: PROXIMITIES VAR00001 . . . /VIEW = CASE
/MEASURE = PH2/STANDARDIZE =NONE. This generates a matrix
of dissimilarities, so the values are then subtracted from 1 to create a
matrix in which higher values correspond to greater similarity.
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formed from phoneme substitutions are included as compet-
itors (but not words that require phoneme additions or de-
letions). The within-type measures allow for more direct
comparisons with some of the continuous measures of
vowel-only perception, which are limited to within-pattern
analyses (see below).

Significant correlations emerged between many measures
of lexical competition, reflecting the fact that these metrics are
attempting to quantify the same underlying variables. For
example, Density B is significantly correlated with phi-
square density, r(4862) = .68, f 2 = 0.86, p < .001. However,
this correlation is partially an artifact, driven by the fact that
different word pattern types (e.g., CVC) have very different
ranges for both measures of lexical competition. For example,
CCCV words have an average of 4.55 Density B neighbors,
whereas CVCs have an average of 26.89. Therefore, the cor-
relation between phi-square density and Density B that in-
cludes both CVCs and CCCVs partially reflects the relation-
ship between phi-square density and Density B, and partially
reflects the different distributions of values of the two words
types. When the word type is limited to just CVCs, for exam-
ple, the correlation between phi-square density and Density B
drops considerably, r(1634) = .34, f 2 = 0.13, p < .001, which is
very similar to the values reported in earlier investigations
(Strand & Sommers, 2011). This moderate correlation indi-
cates that words that have a high value in one metric may have
a low value in another. For example, “both” has 15 Density B
neighbors (well below the mean of 26.9 for CVCs) but has a
phi-square density of 65.8 (well above the mean of 42.4 for
CVCs). Inversely, “nail” has a high value for Density B (47)
but a relatively low phi-square density (26.1).

Measures of visual lexical competition in the database

Categorical measures A parallel to the categorical measures
of auditory lexical competition (Density A and Density B) has
also been created for the visual domain. Visual neighborhoods
(also called lexical equivalence classes, or LECs) were
constructed using the method described in Iverson et al.
(1998) and Owens and Blazek (1985). First, clusters of pho-
nemes that appear similar on their faces (phoneme equiva-
lence classes, or PECs5) were identified (Iverson et al., 1998;
Owens & Blazek, 1985; Walden, Prosek, Montgomery,
Scherr, & Jones, 1977). To calculate PECs, an existing set of
visually presented phoneme confusions (derived from 72 par-
ticipants identifying 24 consonants and 14 vowels) were
employed (Strand & Sommers, 2011). These confusion ma-
trices, which display the frequency with which each phoneme
was identified as every other phoneme, were converted to phi-
square values and entered in a hierarchical cluster analysis.

The analysis generated a tree structure in which all phonemes
are in a unique PEC at the lowest level of the structure and all
phonemes are in a single PEC at the highest level. PEC
groupings are defined as the level at which 70% of responses
fall within the PEC (see Strand & Sommers, 2011, for more
computational details). On average, 80% of vowel responses
and 88% of consonant responses fall within PEC. For each
target word, LECs were defined as any word that could be
formed by substitutions within PEC. For example because
/p/, /m/, and /b/ are part of the same PEC, and because
/t/ and /d/ are part of another PEC, “bad,” “pat,” and “mad”
would be in the same LEC. For each word, the size of the LEC
was calculated [v_lec], as well as the average frequency of
occurrence (Lund & Burgess, 1996) of the LEC members
[v_lec_freq]. As expected, auditory and visual neighborhoods
differed for the same target, reflecting modality-specific pat-
terns of confusability. For example, for the target “cat,” “gaze”
and “get” are visual (but not auditory) neighbors, “pat” and
“vat” are auditory (but not visual) neighbors, and “cad” and
“hat” are in both the auditory and visual neighborhoods (for
information on how information is integrated from auditory
and visual neighborhoods during audiovisual speech percep-
tion, see Tye-Murray et al., 2007).

Continuous measures The calculations for visual phi-square
density follow those of auditory phi-square density, but substi-
tute the visual phoneme confusion matrices. In parallel to the
auditory analysis, these phoneme confusions were converted to
phi-square values, which were used to calculate Φ2NWPs
comparing the target word to every other word in the reference
lexicon. From these Φ2NWPs, the phi-square density
[v_psum], frequency-weighted density [v_fwpsum], standard
deviation [v_psd], skew [v_pskew], and kurtosis [v_pkurt]
were calculated. In parallel to the analysis in the auditory
domain, visual phi-square density and LEC size were signifi-
cantly correlated, r(4862) = .84, f 2 = 2.40, p < .001, and
dropped very slightly to r(1634) = .82, f 2 = 2.05, p < .001,
for CVCs, reflecting the fact that CVCs have highly variable
LEC sizes.

Unlike the auditory analysis, however, target words in the
visual domain were only compared with words of the same
pattern type (e.g., CVC targets compared with CVC compet-
itors). Although the method of including a null response cate-
gory [e.g., p(b | Ø)] is easy to implement in auditory phoneme
identifications, it is difficult to adapt this procedure for visual
phoneme identifications. The challenge of visual phoneme
identification is not determining whether something is present
(a detection task), but rather determining what is present (an
identification task). Although detectionmight be a challenge in
the auditory domain (in which phonemes are presentedmasked
in noise), the fact that a speech movement had been made is
visually very salient, even if identification of that movement is
difficult. In fact, it is difficult to imagine a scenario in which a

5 The terms viseme group and PEC are synonymous, as are LEC and
homophene group.
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participant could watch a speaking face and respond that the
face did not move. Therefore, the method of comparing words
to competitors of different lengths is not applicable. Because
words are compared only to words within a pattern type (e.g.,
CVCs are compared with other CVCs), some caution should
be exercised in comparing the visual phi-square density values
of words of different patterns. For example, many more CVCs
are present in the reference lexicon than are CCCVs, so CVC
target words will generally have higher values than CCCV
target words simply as a function of there being more of them.
This poses a limitation in the quantification process: Although
it is not possible to quantify how words of different lengths
compete in the visual domain, participants do occasionally
confuse words that differ in length (e.g., respond “cast” for
“cat”). Therefore, future work should seek to develop methods
that parallel those allowed by the “null response” category in
the auditory domain.

How to use the online interface

The online database may be accessed at www.juliastrand.com/
phi-lex. First, enter the orthographic form of the word or
words for which to generate data (phonological transcriptions
are available using the ELP; Balota et al., 2007). Multiple
words may be entered at once, separated by commas, spaces,
or line breaks. Next, select the values to generate, either by
selecting individual measures (e.g., v_lec) or classes of mea-
sures (e.g., all visual categorical measures). Place the cursor
over each value attribute for more information. The output
will be displayed as a table within the browser. Values for the
pattern (i.e., CVC) and number of phonemes may also be
generated.

Demonstrations of possible analyses

To demonstrate some uses of the values in the database,
several analyses were conducted, using recognition accuracy
in auditory word identification as the dependent measure
(see Feld & Sommers, 2011; Strand & Sommers, 2011, for
comparisons of categorical and continuous measures of lex-
ical competition at predicting visual word recognition).
Recognition data on 400 CVC words (randomly selected
from the ELP; Balota et al., 2007) were collected from
students at Washington University in St. Louis [N = 50; mean
age = 21 years (SD = 2.3); 34 women, 16 men]. All of the
participants had better-ear hearing thresholds below 25 dB
HL at frequencies of 500, 1000, 2000, and 4000 Hz and
reported English as their native language. They received $10
or course credit for their participation.

Participants read an information sheet, gave verbal con-
sent, and were seated in a sound-attenuating booth (IAC

120A) approximately 0.5 m from a 17-in. Touchsystems
monitor (ELO-170C) running Superlab (Version 4.0.7b,
Cedrus Corporation, 2009) software. They were presented
with audio clips of the 400 words in the carrier phrase “Say
the word ______,” which they identified by typing their
responses on a keyboard. The speech materials were
recorded by a Midwestern female speaker in a sound-
attenuating chamber (IAC 120A) at 44100 Hz, 32 bits. The
stimuli were recorded, edited, and equated for root-mean
square amplitude using Adobe Audacity. All stimuli were
presented via headphones (Beyerdynamic DT 770 Pro) at
approximately 68 dB SPL amidst six-talker background
babble at a –2 SNR. Prior to the analysis, recognition re-
sponses were hand-checked for obvious entry errors, such as
a superfluous punctuation mark (e.g., “soup[“). Entry cor-
rections accounted for fewer than 1% of the responses. No
other deviations from the stimulus words (plurals, inflected
forms) were counted as correct. Eleven words were never
identified correctly, so these were removed to exclude the
possibility of faulty stimuli. Due to experimental error, one
word was never presented to participants, so the analyses are
on the 388 remaining words. For each word, values from
Phi-Lex were obtained.

Comparing density B and phi-square density

A hierarchical multiple regression compared the efficacy of a
categorical metric (Density B) and a continuous one (phi-
square density) at predicting word recognition. Given the
established influences of target word frequency, length (in
milliseconds), and phonotactic probability (see, e.g.,
Vitevitch, Luce, Pisoni, & Auer, 1999), these values were
entered into the model first, followed by Density B. Phi-
square density was added in the final step, and it explained a
significant proportion of unique variance in word recogni-
tion accuracy, beyond that accounted for by the other metrics
(see Table 2).

One other study (Strand & Sommers, 2011) directly com-
pared phi-squaremeasures of competition with neighborhood-
based metrics and found very similar results, with phi-square
measures accounting for an additional 7% of unique variance
beyond that explained by frequency and Density B. Critically,
when phi-square density was entered in the second step,
adding Density B in the third step failed to account for
significant unique variance in word recognition accuracy.
This analysis highlights the advantage of using a continuous
rather than a categorical measure of competition.

Homophones as competitors

To test whether multiple entries of homophones act as
separate competitors for the target word, another hierarchi-
cal multiple regression was conducted, again predicting
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recognition accuracy for the 387 CVC words. After control-
ling for target word frequency, word length, phonotactic prob-
ability, and phi-square density while excluding homophones,
phi-square density including homophones accounted for a
small but significant amount of unique variance in word rec-
ognition accuracy (see Table 3). If phi-square density including
homophones was entered first, phi-square density excluding
homophones did not explain significant additional variance.
Although the amount of additional variance explained was
small, this implies that multiple homophonous entries might
provide competition for a stimulus word.

Dispersion

A final analysis explored how the dispersion of the distribu-
tion of Φ2NWP values influenced word recognition accura-
cy. After controlling for frequency, phonotactic probability,
word length, and phi-square density, a step was included in
which phi-square SD, skew, and kurtosis were entered in a
stepwise regression. Phi-square SD accounted for a small but
significant additional 2% of the variance (see Table 4).

The beta weight of SD predicting accuracy was negative,
indicating that words with more dispersion in the distribution
of Φ2NWPs were identified less accurately than words with
NWPs more clustered around the mean. In the earlier exam-
ple, words like “dose,” whose phi-square densities come
from many, less-similar competitors, are recognized more
accurately than words like “seat,” whose competition is
derived from fewer, more-similar competitors.

Suggestions for future research Future studies might explore
whether the novel findings demonstrated here (e.g., the ef-
fects of homophones and dispersion on auditory word rec-
ognition) also influence visually identified words. Analyses
of this kind would further test the claim that the processes
underlying word recognition are similar in the auditory and
visual domains (Mattys et al., 2002), Future research might
also investigate how auditory and visual phi-square density
predict audiovisual word recognition. Tye-Murray et al.
(2007) demonstrated that audiovisual word recognition de-
pends jointly on auditory and visual neighborhood size, but
no studies to date have attempted to model the integration of
auditory and visual lexical competition using continuous
measures.

Conclusions and notes on use

A large number of metrics are included in the present data-
base so that researchers may test specific hypotheses about
the nature of lexical competition, like those described above.
For example, if one were exploring how multiple homo-
phones provide independent competition, it would be useful
to have the _NH measures in addition to the standard mea-
sures. If comparing auditory and visual competition, it would
be more appropriate to use the _WT (within-type) measures
of auditory competition, because all visual measures are
calculated within pattern type. However, the large number

Table 2 Hierarchical multiple regression comparing the efficacy of
Density B and phi-square density at predicting spoken word recognition

Variables R2 ΔR2 β f 2

Step 1: .04 .04** .04
Frequency .21

PhonProb .02

Length –.02

Step 2: .06 .03** –.09 .02
DensityB

Step 3: .16 .09** –.33 .12
Phi-square density

f 2 values represent the effect size when adding each step to the model,
and βs reflect values at the final step. ** p < .01

Table 3 Hierarchical multiple regression comparing the efficacy of
measures including and excluding homophones at predicting spoken
word recognition

Variables R2 ΔR2 β f 2

Step 1: .04 .04** .04
Frequency .21

PhonProb –.01

Length .01

Step 2: .14 .10** –.74 .12
A_Psum_NH

Step 3: .16 .02* –1.1 .02
A_Psum

f 2 values represent the effect size when adding each step to the model,
and βs reflect values at the final step. * p < .05, ** p < .01

Table 4 Hierarchical multiple regression comparing the efficacy of
measures including and excluding homophones at predicting spoken
word recognition

Variables R2 ΔR2 β f 2

Step 1: .04 .04** .04
Frequency .21

PhonProb .02

Length –.03

Step 2: .15 .11** –.08 .13
A_Psum

Step 3: .17 .02* –.32 .02
A_PSD

f 2 values represent the effect size when adding each step to the model,
and βs reflect values at the final step. * p < .05, ** p < .01

Behav Res

Author's personal copy



of values might lead to concerns about the potential for bias:
Researchers may opt to use a metric of competition that
would produce a desired effect. Unless there is a specific
theoretical justification for using another measure, re-
searchers should opt for auditory or visual phi-square density
(including homophones) as the default measures of lexical
competition. This includes researchers whose main interests
lie elsewhere and who are using Phi-Lex to control for
measures of lexical competition (e.g., to match lists of words
on relevant variables). In addition, because different percep-
tual features are salient in auditory and visual speech per-
ception, measures of competition should only be applied to
the appropriate modality (i.e., one should use auditory mea-
sures to predict auditory word recognition).

Measures of lexical competition based on the phi-square
statistic have demonstrated success in predicting both audi-
tory and visual spoken word recognition and overcoming the
limitations of categorical measures (Feld & Sommers, 2011;
Strand & Sommers, 2011). Because lexical competition in-
fluences many cognitive and linguistic processes, studies of
reading and memory (e.g., Delattre, Bonin, & Barry, 2006;
Perre, Pattamadilok, Montant, & Ziegler, 2009; Roodenrys,
Hulme, Lethbridge, Hinton, & Nimmo, 2002; Ziegler &
Ferrand, 1998) have often relied on measures of neighbor-
hood size to equate stimulus lists while exploring other vari-
ables. Making metrics based on the phi-square statistic read-
ily accessible to the scientific community will allow others to
more effectively control for the influence of lexical compe-
tition when exploring other topics, and to test assumptions
about the processes underlying spoken word recognition.

Author note I am grateful to Jon Strand for creating the online
database, to Paul Mains and Sarah Meerts for insightful suggestions,
and toAllisonCooperman, Susanne Gahl, and Brent Spehar for providing
helpful comments on a previous version. Correspondence concerning this
article should be addressed to J.F.Strand, Department of Psychology,
Carleton College, Northfield, MN 55057 (email: jstrand@carleton.edu).
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